77 lines
1.1 KiB
Markdown
77 lines
1.1 KiB
Markdown
# Ohms Law
|
|
Solve for voltage:
|
|
|
|
$$
|
|
\begin{flalign}
|
|
V &= \frac{I}{R}&
|
|
\end{flalign}
|
|
$$
|
|
*Solve for resistance:*
|
|
|
|
$$
|
|
\begin{flalign}
|
|
R &= \frac{V}{I} &
|
|
\end{flalign}
|
|
$$
|
|
_Solve for current_
|
|
$$
|
|
\begin{flalign}
|
|
I & = \frac{V}{R} &
|
|
\end{flalign}
|
|
$$
|
|
|
|
# Resistors in Series
|
|
|
|
$$
|
|
\begin{flalign}
|
|
R &= R1 + R2 + R3 ... &
|
|
\end{flalign}
|
|
$$
|
|
|
|
# Resistors in Parallel
|
|
|
|
$$
|
|
\begin{flalign}
|
|
\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &&\\
|
|
\\
|
|
\textit{For two resistors in parallel:} &&\\
|
|
\\
|
|
R = \frac{R1 * R2}{R1 + R2} &&\\
|
|
\end{flalign}
|
|
$$
|
|
|
|
***Tip:***
|
|
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
|
|
|
|
# Kirchhoff's Law
|
|
|
|
## Conservation of Charge (First Law)
|
|
|
|
All current entering a node must also leave that node
|
|
|
|
$$
|
|
\begin{flalign}
|
|
\sum{I_{IN}} = \sum{I_{OUT}}&&
|
|
\end{flalign}
|
|
$$
|
|
|
|
**Example:**
|
|
|
|
![](./assets/kirchhoffs-law-01.svg)
|
|
|
|
For this circuit kirchhoffs law states that:
|
|
$$
|
|
\begin{flalign}
|
|
i1 = i2 + i3 + i4 &&
|
|
\end{flalign}
|
|
$$
|
|
|
|
## Conservation of Energy (Second Law)
|
|
All the potential differences around the loop must sum to zero.
|
|
$$
|
|
\begin{flalign}
|
|
\sum{V} = 0 &&
|
|
\end{flalign}
|
|
$$
|
|
|