# Ohms Law Solve for voltage: $$ \begin{flalign} V &= \frac{I}{R}& \end{flalign} $$ *Solve for resistance:* $$ \begin{flalign} R &= \frac{V}{I} & \end{flalign} $$ _Solve for current_ $$ \begin{flalign} I & = \frac{V}{R} & \end{flalign} $$ # Resistors in Series $$ \begin{flalign} R &= R1 + R2 + R3 ... & \end{flalign} $$ # Resistors in Parallel $$ \begin{flalign} \frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &&\\ \\ \textit{For two resistors in parallel:} &&\\ \\ R = \frac{R1 * R2}{R1 + R2} &&\\ \end{flalign} $$ ***Tip:*** If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors. # Kirchhoff's Law ## Conservation of Charge (First Law) All current entering a node must also leave that node $$ \begin{flalign} \sum{I_{IN}} = \sum{I_{OUT}}&& \end{flalign} $$ **Example:** ![](./assets/kirchhoffs-law-01.svg) For this circuit kirchhoffs law states that: $$ \begin{flalign} i1 = i2 + i3 + i4 && \end{flalign} $$ ## Conservation of Energy (Second Law) All the potential differences around the loop must sum to zero. $$ \begin{flalign} \sum{V} = 0 && \end{flalign} $$