1.1 KiB
1.1 KiB
Ohms Law
Solve for voltage:
\begin{flalign}
V &= \frac{I}{R}&
\end{flalign}
Solve for resistance:
\begin{flalign}
R &= \frac{V}{I} &
\end{flalign}
Solve for current
\begin{flalign}
I & = \frac{V}{R} &
\end{flalign}
Resistors in Series
\begin{flalign}
R &= R1 + R2 + R3 ... &
\end{flalign}
Resistors in Parallel
\begin{flalign}
\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &&\\
\\
\textit{For two resistors in parallel:} &&\\
\\
R = \frac{R1 * R2}{R1 + R2} &&\\
\end{flalign}
Tip: If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
Kirchhoff's Law
Conservation of Charge (First Law)
All current entering a node must also leave that node
\begin{flalign}
\sum{I_{IN}} = \sum{I_{OUT}}&&
\end{flalign}
Example:
For this circuit kirchhoffs law states that:
\begin{flalign}
i1 = i2 + i3 + i4 &&
\end{flalign}
Conservation of Energy (Second Law)
All the potential differences around the loop must sum to zero.
\begin{flalign}
\sum{V} = 0 &&
\end{flalign}