notes/Resources/electricity/formulas.md

192 lines
3.4 KiB
Markdown
Raw Normal View History

2022-06-05 18:53:01 +02:00
---
cards-deck: electricity
---
2022-03-10 20:49:10 +01:00
## Ohms Law
2022-03-20 18:30:04 +01:00
*Solve for voltage:*
#card
2022-03-10 20:49:10 +01:00
2022-06-05 18:53:01 +02:00
$\displaystyle V = I*R$
^1654598090369
2022-03-20 18:30:04 +01:00
*Solve for resistance:*
#card
2022-03-10 20:49:10 +01:00
2022-06-05 18:53:01 +02:00
$\displaystyle R = \frac{V}{I}$
^1654598090389
2022-06-05 18:53:01 +02:00
*Solve for current*
#card
2022-06-05 18:53:01 +02:00
$\displaystyle I = \frac{V}{R}$
^1654598090398
2022-06-05 18:53:01 +02:00
## Resistors in Series
#card
2022-03-10 20:49:10 +01:00
2022-03-20 18:30:04 +01:00
$R = R1 + R2 + R3 ...$
^1654598090404
2022-03-10 20:49:10 +01:00
## Resistors in Parallel
#card
2022-03-10 20:49:10 +01:00
$$
\begin{flalign}
2022-03-20 18:30:04 +01:00
&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\
2022-03-10 20:49:10 +01:00
\\
2022-03-20 18:30:04 +01:00
&\textit{For two resistors in parallel:} &\\
2022-03-10 20:49:10 +01:00
\\
2022-03-20 18:30:04 +01:00
&R = \frac{R1 * R2}{R1 + R2} &\\\
2022-03-10 20:49:10 +01:00
\end{flalign}
$$
2022-03-13 19:17:20 +01:00
***Tip:***
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
## Voltage Divider
#card
^1654598090410
$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$
2022-03-10 20:49:10 +01:00
2022-03-20 23:15:38 +01:00
## Thevenins Theorem
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
## Conservation of Charge (First Law)
#card
2022-03-10 20:49:10 +01:00
2022-03-13 19:17:20 +01:00
All current entering a node must also leave that node
2022-03-10 20:49:10 +01:00
$$
\begin{flalign}
2022-03-13 19:17:20 +01:00
\sum{I_{IN}} = \sum{I_{OUT}}&&
2022-03-10 20:49:10 +01:00
\end{flalign}
$$
**Example:**
^1654598090415
2022-03-10 20:49:10 +01:00
2022-04-15 14:51:51 +02:00
![](kirchhoffs-law-01.svg)
2022-03-10 20:49:10 +01:00
For this circuit kirchhoffs law states that:
2022-03-20 18:30:04 +01:00
$\displaystyle i1 = i2 + i3 + i4$
2022-03-10 20:49:10 +01:00
2022-03-13 19:17:20 +01:00
## Conservation of Energy (Second Law)
All the potential differences around the loop must sum to zero.
2022-03-20 18:30:04 +01:00
$\displaystyle \sum{V} = 0$
2022-03-10 20:49:10 +01:00
2022-03-15 19:59:12 +01:00
## Capacitors in Series
#card
2022-03-15 19:59:12 +01:00
2022-03-20 18:30:04 +01:00
$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$
^1654598090421
2022-03-20 18:30:04 +01:00
## Impedance in a Circuit
#card
2022-03-15 19:59:12 +01:00
$$
2022-03-20 18:30:04 +01:00
\begin{flalign}
&Z = \sqrt{R^2 + X^2} &\\\
2022-03-20 23:15:38 +01:00
\\
2022-03-20 18:30:04 +01:00
&X = X_{L} - X_{C} \\
\end{flalign}
2022-03-23 16:31:29 +01:00
$$
## Capacitive Reactance
#card
^1654598090426
2022-03-23 16:31:29 +01:00
$\displaystyle X_{c} = \frac{1}{2 \pi fC}$
## Inductive Reactance
#card
2022-03-23 16:31:29 +01:00
$\displaystyle X_{l} = 2\pi fL$
^1654598090432
2022-03-23 16:31:29 +01:00
## Analog Filters
2022-03-23 16:31:29 +01:00
## Cutoff Frequency for RC Filters
#card
2022-03-23 16:31:29 +01:00
$\displaystyle f_{c} = \frac{1}{2\pi RC}$
^1654598090437
2022-03-23 16:31:29 +01:00
## Cutoff Frequency for RL Filters
#card
2022-03-23 16:31:29 +01:00
$\displaystyle f_{c} = \frac{R}{2\pi L}$
^1654598090445
2022-03-23 16:31:29 +01:00
## Cutoff Frequency for multiple Low Pass Filters
$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$
Where $n$ = Number if **identical** filters
2022-03-30 15:07:33 +02:00
## Resonance Frequency for RLC Low Pass Filter
#card
2022-03-23 16:31:29 +01:00
2022-03-29 00:02:22 +02:00
$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$
^1654598090452
2022-03-29 00:02:22 +02:00
2022-03-30 15:07:33 +02:00
## Center Frequency with Fc and Fh
#card
2022-03-29 00:02:22 +02:00
$f_{c} = \sqrt{f_{h}*f_{l}}$
^1654598090459
2022-03-29 00:02:22 +02:00
## Filter Response for RC Filters
#card
2022-03-29 00:02:22 +02:00
$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$
^1654598090466
2022-03-29 00:02:22 +02:00
## Cutoff Frequency $\pi$ Topology Filter
#card
2022-03-29 00:02:22 +02:00
When the two capacitors have the same capacitance, it can be calculated like this:
^1654598090479
2022-03-29 00:02:22 +02:00
$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$
## Angular Frequency ($\omega$)
#card
2022-03-29 00:02:22 +02:00
2022-06-05 18:53:01 +02:00
$\omega = 2\pi f = \frac{2\pi}{T}$
^1654598090492
2022-03-29 00:02:22 +02:00
## RLC Series Response
2022-03-29 00:02:22 +02:00
This is basically Ohms Law:
$\displaystyle V = IZ$
Where $Z$ is the impedance:
$Z = \sqrt{R^2 + (X_L - X_C)^2}$
2022-06-05 18:53:01 +02:00
$X_L$ = Reactive Inductance
$X_C$ = Reactive Capacativw
2022-03-29 00:02:22 +02:00
## Current through a transistor
2022-03-29 00:02:22 +02:00
2022-04-05 11:27:35 +02:00
$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$
## Gain Bandwidth Product
#card
2022-04-05 11:27:35 +02:00
$GBP = A_V * f_c$
^1654598090498
2022-06-05 18:53:01 +02:00
2022-04-05 11:27:35 +02:00
$\displaystyle f_c = \frac{GBP}{A_V}$
## Bandwidth of Multiple OpAmps
2022-04-05 11:27:35 +02:00
Where $n$ = number of stages
and $BW$ = Bandwidth of single op-amp
2022-06-05 18:53:01 +02:00
$BW_E = BW\sqrt{2^\frac{1}{n}-1}$
## Power lost in a Resistor
#card
2022-06-05 18:53:01 +02:00
$P = IV = I^2R = \frac{V^2}{R}$
^1654598090504