feat: finished capacitor chapter

This commit is contained in:
max_richter 2022-03-15 19:59:12 +01:00
parent cbb0463352
commit 7bac5fc073
14 changed files with 168 additions and 6 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

View File

@ -0,0 +1 @@
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="380" height="100"><defs/><g><rect fill="#000000" stroke="none" x="0" y="0" width="380" height="100"/><g transform="scale(1,1) translate(-90,-142)"><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 160 192 L 184 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 216 192 L 240 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><g transform="matrix(1,0,0,1,184,192)"><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 0 0 L 2 6 L 6 -6 L 10 6 L 14 -6 L 18 6 L 22 -6 L 26 6 L 30 -6 L 32 0" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/></g><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 163 192 A 3 3 0 1 1 162.99999999995774 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 243 192 A 3 3 0 1 1 242.99999999995774 191.99998407846124 Z"/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 240 192 L 276 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 276 180 L 276 204" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 320 192 L 284 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 284 180 L 284 204" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 243 192 A 3 3 0 1 1 242.99999999995774 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 323 192 A 3 3 0 1 1 322.99999999995777 191.99998407846124 Z"/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 320 192 L 344 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 376 192 L 400 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><g transform="matrix(1,0,0,1,344,192) scale(1,1)"><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 0 0 L 0 6.53144959545255e-16 A 5.333333333333333 5.333333333333333 0 0 1 10.666666666666666 0 L 10.666666666666666 0" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 10.666666666666666 0 L 10.666666666666668 6.53144959545255e-16 A 5.333333333333333 5.333333333333333 0 0 1 21.333333333333332 0 L 21.333333333333332 0" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 21.333333333333332 0 L 21.333333333333336 6.53144959545255e-16 A 5.333333333333333 5.333333333333333 0 0 1 32 0 L 32 0" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/></g><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 323 192 A 3 3 0 1 1 322.99999999995777 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 403 192 A 3 3 0 1 1 402.99999999995777 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 163 192 A 3 3 0 1 1 162.99999999995774 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 403 192 A 3 3 0 1 1 402.99999999995777 191.99998407846124 Z"/></g></g></svg>

After

Width:  |  Height:  |  Size: 3.9 KiB

View File

@ -74,3 +74,8 @@ $$
\end{flalign}
$$
## Capacitors in Series
$$
\frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...
$$

View File

@ -9,6 +9,15 @@ Current
## Ohms
Resistance
## Hertz (f)
Term | Symbol | Weight
----------|------- | -----
Hertz | Hz | $10^0$
Kilohertz | kHz | $10^{3}$
Megahertz | mHz | $10^6$
## Watt (Power)
$Power = V * I = \frac{V^{2}}{R} = I^{2}R$
@ -36,13 +45,18 @@ House | 2.2kW
## Ohms Law
$$
V = \frac{I}{R}
V = {I}*{R}
$$
## Impedance
= Resistance for Nerds
## Impedance (Z)
## Current
## Voltage (V)
## Resistance (R)
## Capacitance (C)
## Current (I)
How many electrons flow through a circuit in a second
## Polarity
@ -52,14 +66,20 @@ Polarised means that a component is not symmetric
## Voltage Divider
## Farad
1 Farad = the ability to store 1 couloumb
Term | Symbol | Weight
-----------|----|------
Picofarad | pW | $10^{-12}$
Nanofarad | nF | $10^{-9}$
Microfarad | $\micro$F | $10^{-6}$
Milifarad | mF | $10^{-3}$
Farad | F | $10^0$
Kilofarad | kF | $10^{3}$
## Couloumb
1 coulomb is the electric charge transported within one second through the cross-section of a conductor in which an electric current of the strength of 1 ampere flows.
## LED
Anode - The shorter Leg

View File

@ -19,9 +19,39 @@ $$
### Important Metrics
**Size:**
**Size**
Larger Capacity $\approx$ Larger Size
**Charge**
How much charge a capacitor is currently storing depends on the potential difference between its plates
$$
\begin{flalign}
&Q = C*V &&\\\
\\
&Q = Charge \\
&C = \textit{Capacitance (Constant Value)}\\
&V = Voltage\\
\end{flalign}
$$
**Voltage**
The current that is flowing through a capacitor is the derivative of voltage
**Charging Current**
The charging current through a capacitor is proportional to the rate of change in voltage through it.
The formular for calculating the current flowing through a capacitor is following
*Note: only for linearly rising/falling voltages (not AC)*
$$
i = C\frac{dv}{dt}
$$
**Capacitance**
The amount of charge a capacitor can store
**Maximum Voltage**
Each capacitor has a maximum voltage that can be dropped across it.
@ -62,4 +92,6 @@ The capacity is not always exact, the tolerance describes how much it could vary
- Can work in hot environments > $200\deg$
- Low ESR
- High Precision
- High Cost
- High Cost

View File

@ -0,0 +1,2 @@
# Coupling / Decoupling Capacitor

View File

@ -0,0 +1,91 @@
# Impedance/Reactance of capacitors
## Capacitive Reactance
Is a measure of a capacitors opposition to alternating current.
$Xc$ in $\ohm$
$X_{c} = \frac{1}{2 \pi fC}$
$Xc = \textit{Capacity in } \ohm$
f = Frequency in Hertz
C = Capacitance in Farads
![](../../assets/graphXC.gif)
Higher Frequence $\Rightarrow$ Lower Current Flow
Higher Capacitance $\Rightarrow$ Lower Current Flow
When the Frequency is 0, the capacitor acts as an open circuit
When the Frequency is really high, the capacitor is equal to a simple wire
**Example:**
Calculate the capacitive reactance of a 220nF capacitor at a frequency of 1kHz and 20kHz
$$
\begin{flalign}
&X_{c} = \frac{1}{2 \pi * 1000 * 220 * 10^{-9} } \\
&X_{x} \approx \textbf{723.43} \ohm\\
\\
&X_{c} = \frac{1}{2 \pi * 20000 * 220 * 10^{-9} } \\
&X_{x} \approx \textbf{36.17} \ohm\\
\end{flalign}
$$
Here we can see when the frequency increases the reactive capacitance decreases
**Example 2:**
```circuitjs
$ 1 0.000005 10.20027730826997 50 5 43 5e-11
v 208 256 208 144 0 1 80 5 0 0 0.5
r 208 144 336 144 0 100
c 336 144 336 256 0 0.000029999999999999997 -2.4446139526159825 0.001
w 336 256 208 256 0
```
How would we calculate the $I_{rms}$ of this circuit, we'll basically using Ohms Formular
$$
I_{rms} = \frac{V_{rms}}{R1+X_{c}}
$$
The Problem is, we can't just simply add up R1 and Xc, because Xc is shifted by 90°. We need to add them up as Vectors:
$$
Re = \sqrt{R1^2+Xx^2}
$$
Lets fill in the numbers from the circuit above and test it out:
$$
\begin{flalign}
&X_{c} = \frac{1}{2 \pi * 80 * 30 * 10^{-6}} &&\\\
&X_{c} \approx 66.3 \ohm \\
&V_{rms} = 3.5v \\
\\
&I_{rms} = \frac{3.5}{\sqrt{100^2+66.3^2}} \\
&I_{rms} = \frac{3.5}{119.98} \\
&I_{rms} = 0.029171033 A \\
&I_{rms} \approx 29.17mA
\end{flalign}
$$
## Reality
In reality capacitors are not perfect, they are more like:
![](../../assets/rlc-capacitor.svg)
So the have a $ESR$ and $X_{C}$ and $X_{L} / ESL$
$$
C_{IMP} = ESR + X_{C} + X_{L}
$$
Due to this the frequency to impedance curve of real capacitors look something like this.
![](../../assets/EMC-9_graf_01.gif)
When we add multiple capacitors we can get a curve looking like this
![](../../assets/rlc-capacitor-multiple.png)

View File

@ -0,0 +1,11 @@
# Inductors
The Inductive reactince is
**Inductance:**
$$
\begin{flalign}
&X_{L} = 2\pi fL&&\\\
&L = Inductance
\end{flalign}
$$