feat: finished capacitor chapter
This commit is contained in:
parent
cbb0463352
commit
7bac5fc073
BIN
Areas/electricity/assets/EMC-9_graf_01.gif
Normal file
BIN
Areas/electricity/assets/EMC-9_graf_01.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
BIN
Areas/electricity/assets/graphXc.gif
Normal file
BIN
Areas/electricity/assets/graphXc.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.0 KiB |
BIN
Areas/electricity/assets/rlc-capacitor-multiple.png
Normal file
BIN
Areas/electricity/assets/rlc-capacitor-multiple.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 84 KiB |
1
Areas/electricity/assets/rlc-capacitor.svg
Normal file
1
Areas/electricity/assets/rlc-capacitor.svg
Normal file
@ -0,0 +1 @@
|
||||
<svg version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="380" height="100"><defs/><g><rect fill="#000000" stroke="none" x="0" y="0" width="380" height="100"/><g transform="scale(1,1) translate(-90,-142)"><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 160 192 L 184 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 216 192 L 240 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><g transform="matrix(1,0,0,1,184,192)"><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 0 0 L 2 6 L 6 -6 L 10 6 L 14 -6 L 18 6 L 22 -6 L 26 6 L 30 -6 L 32 0" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/></g><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 163 192 A 3 3 0 1 1 162.99999999995774 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 243 192 A 3 3 0 1 1 242.99999999995774 191.99998407846124 Z"/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 240 192 L 276 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 276 180 L 276 204" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 320 192 L 284 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 284 180 L 284 204" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 243 192 A 3 3 0 1 1 242.99999999995774 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 323 192 A 3 3 0 1 1 322.99999999995777 191.99998407846124 Z"/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 320 192 L 344 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 376 192 L 400 192" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><g transform="matrix(1,0,0,1,344,192) scale(1,1)"><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 0 0 L 0 6.53144959545255e-16 A 5.333333333333333 5.333333333333333 0 0 1 10.666666666666666 0 L 10.666666666666666 0" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 10.666666666666666 0 L 10.666666666666668 6.53144959545255e-16 A 5.333333333333333 5.333333333333333 0 0 1 21.333333333333332 0 L 21.333333333333332 0" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/><path fill="none" stroke="#00ffff" paint-order="fill stroke markers" d=" M 21.333333333333332 0 L 21.333333333333336 6.53144959545255e-16 A 5.333333333333333 5.333333333333333 0 0 1 32 0 L 32 0" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" stroke-dasharray=""/></g><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 323 192 A 3 3 0 1 1 322.99999999995777 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 403 192 A 3 3 0 1 1 402.99999999995777 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 163 192 A 3 3 0 1 1 162.99999999995774 191.99998407846124 Z"/><path fill="#ffffff" stroke="none" paint-order="stroke fill markers" d=" M 403 192 A 3 3 0 1 1 402.99999999995777 191.99998407846124 Z"/></g></g></svg>
|
After Width: | Height: | Size: 3.9 KiB |
@ -74,3 +74,8 @@ $$
|
||||
\end{flalign}
|
||||
$$
|
||||
|
||||
## Capacitors in Series
|
||||
|
||||
$$
|
||||
\frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...
|
||||
$$
|
@ -9,6 +9,15 @@ Current
|
||||
## Ohms
|
||||
Resistance
|
||||
|
||||
## Hertz (f)
|
||||
Term | Symbol | Weight
|
||||
----------|------- | -----
|
||||
Hertz | Hz | $10^0$
|
||||
Kilohertz | kHz | $10^{3}$
|
||||
Megahertz | mHz | $10^6$
|
||||
|
||||
|
||||
|
||||
## Watt (Power)
|
||||
|
||||
$Power = V * I = \frac{V^{2}}{R} = I^{2}R$
|
||||
@ -36,13 +45,18 @@ House | 2.2kW
|
||||
|
||||
## Ohms Law
|
||||
$$
|
||||
V = \frac{I}{R}
|
||||
V = {I}*{R}
|
||||
$$
|
||||
|
||||
## Impedance
|
||||
= Resistance for Nerds
|
||||
## Impedance (Z)
|
||||
|
||||
## Current
|
||||
## Voltage (V)
|
||||
|
||||
## Resistance (R)
|
||||
|
||||
## Capacitance (C)
|
||||
|
||||
## Current (I)
|
||||
How many electrons flow through a circuit in a second
|
||||
|
||||
## Polarity
|
||||
@ -52,14 +66,20 @@ Polarised means that a component is not symmetric
|
||||
## Voltage Divider
|
||||
|
||||
## Farad
|
||||
1 Farad = the ability to store 1 couloumb
|
||||
|
||||
Term | Symbol | Weight
|
||||
-----------|----|------
|
||||
Picofarad | pW | $10^{-12}$
|
||||
Nanofarad | nF | $10^{-9}$
|
||||
Microfarad | $\micro$F | $10^{-6}$
|
||||
Milifarad | mF | $10^{-3}$
|
||||
Farad | F | $10^0$
|
||||
Kilofarad | kF | $10^{3}$
|
||||
|
||||
## Couloumb
|
||||
1 coulomb is the electric charge transported within one second through the cross-section of a conductor in which an electric current of the strength of 1 ampere flows.
|
||||
|
||||
## LED
|
||||
|
||||
Anode - The shorter Leg
|
||||
|
@ -19,9 +19,39 @@ $$
|
||||
|
||||
### Important Metrics
|
||||
|
||||
**Size:**
|
||||
**Size**
|
||||
Larger Capacity $\approx$ Larger Size
|
||||
|
||||
**Charge**
|
||||
How much charge a capacitor is currently storing depends on the potential difference between its plates
|
||||
|
||||
$$
|
||||
\begin{flalign}
|
||||
&Q = C*V &&\\\
|
||||
\\
|
||||
&Q = Charge \\
|
||||
&C = \textit{Capacitance (Constant Value)}\\
|
||||
&V = Voltage\\
|
||||
\end{flalign}
|
||||
$$
|
||||
**Voltage**
|
||||
The current that is flowing through a capacitor is the derivative of voltage
|
||||
|
||||
**Charging Current**
|
||||
|
||||
The charging current through a capacitor is proportional to the rate of change in voltage through it.
|
||||
|
||||
The formular for calculating the current flowing through a capacitor is following
|
||||
|
||||
*Note: only for linearly rising/falling voltages (not AC)*
|
||||
|
||||
$$
|
||||
i = C\frac{dv}{dt}
|
||||
$$
|
||||
|
||||
**Capacitance**
|
||||
The amount of charge a capacitor can store
|
||||
|
||||
**Maximum Voltage**
|
||||
Each capacitor has a maximum voltage that can be dropped across it.
|
||||
|
||||
@ -62,4 +92,6 @@ The capacity is not always exact, the tolerance describes how much it could vary
|
||||
- Can work in hot environments > $200\deg$
|
||||
- Low ESR
|
||||
- High Precision
|
||||
- High Cost
|
||||
- High Cost
|
||||
|
||||
|
2
Areas/electricity/parts/capacitors/coupling.md
Normal file
2
Areas/electricity/parts/capacitors/coupling.md
Normal file
@ -0,0 +1,2 @@
|
||||
# Coupling / Decoupling Capacitor
|
||||
|
91
Areas/electricity/parts/capacitors/impedance-reactance.md
Normal file
91
Areas/electricity/parts/capacitors/impedance-reactance.md
Normal file
@ -0,0 +1,91 @@
|
||||
# Impedance/Reactance of capacitors
|
||||
|
||||
## Capacitive Reactance
|
||||
Is a measure of a capacitors opposition to alternating current.
|
||||
|
||||
$Xc$ in $\ohm$
|
||||
|
||||
$X_{c} = \frac{1}{2 \pi fC}$
|
||||
$Xc = \textit{Capacity in } \ohm$
|
||||
f = Frequency in Hertz
|
||||
C = Capacitance in Farads
|
||||
|
||||
![](../../assets/graphXC.gif)
|
||||
|
||||
Higher Frequence $\Rightarrow$ Lower Current Flow
|
||||
Higher Capacitance $\Rightarrow$ Lower Current Flow
|
||||
|
||||
When the Frequency is 0, the capacitor acts as an open circuit
|
||||
When the Frequency is really high, the capacitor is equal to a simple wire
|
||||
|
||||
**Example:**
|
||||
|
||||
Calculate the capacitive reactance of a 220nF capacitor at a frequency of 1kHz and 20kHz
|
||||
|
||||
$$
|
||||
\begin{flalign}
|
||||
&X_{c} = \frac{1}{2 \pi * 1000 * 220 * 10^{-9} } \\
|
||||
&X_{x} \approx \textbf{723.43} \ohm\\
|
||||
\\
|
||||
&X_{c} = \frac{1}{2 \pi * 20000 * 220 * 10^{-9} } \\
|
||||
&X_{x} \approx \textbf{36.17} \ohm\\
|
||||
\end{flalign}
|
||||
$$
|
||||
|
||||
Here we can see when the frequency increases the reactive capacitance decreases
|
||||
|
||||
**Example 2:**
|
||||
|
||||
```circuitjs
|
||||
$ 1 0.000005 10.20027730826997 50 5 43 5e-11
|
||||
v 208 256 208 144 0 1 80 5 0 0 0.5
|
||||
r 208 144 336 144 0 100
|
||||
c 336 144 336 256 0 0.000029999999999999997 -2.4446139526159825 0.001
|
||||
w 336 256 208 256 0
|
||||
```
|
||||
|
||||
How would we calculate the $I_{rms}$ of this circuit, we'll basically using Ohms Formular
|
||||
|
||||
$$
|
||||
I_{rms} = \frac{V_{rms}}{R1+X_{c}}
|
||||
$$
|
||||
The Problem is, we can't just simply add up R1 and Xc, because Xc is shifted by 90°. We need to add them up as Vectors:
|
||||
|
||||
$$
|
||||
Re = \sqrt{R1^2+Xx^2}
|
||||
$$
|
||||
|
||||
Lets fill in the numbers from the circuit above and test it out:
|
||||
|
||||
$$
|
||||
\begin{flalign}
|
||||
&X_{c} = \frac{1}{2 \pi * 80 * 30 * 10^{-6}} &&\\\
|
||||
&X_{c} \approx 66.3 \ohm \\
|
||||
&V_{rms} = 3.5v \\
|
||||
\\
|
||||
&I_{rms} = \frac{3.5}{\sqrt{100^2+66.3^2}} \\
|
||||
&I_{rms} = \frac{3.5}{119.98} \\
|
||||
&I_{rms} = 0.029171033 A \\
|
||||
&I_{rms} \approx 29.17mA
|
||||
|
||||
\end{flalign}
|
||||
$$
|
||||
|
||||
|
||||
## Reality
|
||||
In reality capacitors are not perfect, they are more like:
|
||||
![](../../assets/rlc-capacitor.svg)
|
||||
|
||||
So the have a $ESR$ and $X_{C}$ and $X_{L} / ESL$
|
||||
|
||||
$$
|
||||
C_{IMP} = ESR + X_{C} + X_{L}
|
||||
$$
|
||||
|
||||
Due to this the frequency to impedance curve of real capacitors look something like this.
|
||||
|
||||
![](../../assets/EMC-9_graf_01.gif)
|
||||
|
||||
When we add multiple capacitors we can get a curve looking like this
|
||||
|
||||
![](../../assets/rlc-capacitor-multiple.png)
|
0
Areas/electricity/parts/capacitors/smoothing.md
Normal file
0
Areas/electricity/parts/capacitors/smoothing.md
Normal file
11
Areas/electricity/parts/inductors.md
Normal file
11
Areas/electricity/parts/inductors.md
Normal file
@ -0,0 +1,11 @@
|
||||
# Inductors
|
||||
The Inductive reactince is
|
||||
|
||||
**Inductance:**
|
||||
|
||||
$$
|
||||
\begin{flalign}
|
||||
&X_{L} = 2\pi fL&&\\\
|
||||
&L = Inductance
|
||||
\end{flalign}
|
||||
$$
|
Loading…
Reference in New Issue
Block a user