184 lines
3.2 KiB
Markdown
184 lines
3.2 KiB
Markdown
## Ohms Law
|
||
|
||
*Solve for voltage:*
|
||
|
||
```latex
|
||
\displaystyle V = I*R
|
||
```
|
||
|
||
*Solve for resistance:*
|
||
|
||
```latex
|
||
\displaystyle R = \frac{V}{I}
|
||
```
|
||
|
||
*Solve for current*
|
||
```latex
|
||
\displaystyle I = \frac{V}{R}
|
||
```
|
||
|
||
## Resistors in Series
|
||
|
||
```latex
|
||
R = R1 + R2 + R3 ...
|
||
```
|
||
|
||
## Resistors in Parallel
|
||
|
||
```latex
|
||
\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... \\
|
||
\textit{}\\
|
||
\textit{For two resistors in parallel:}\\
|
||
\textit{}\\
|
||
R = \frac{R1 * R2}{R1 + R2}
|
||
```
|
||
|
||
***Tip:***
|
||
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
|
||
|
||
## Voltage Divider
|
||
|
||
```latex
|
||
V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})
|
||
```
|
||
|
||
## Thevenin’s Theorem
|
||
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
|
||
|
||
## Conservation of Charge (First Law)
|
||
|
||
All current entering a node must also leave that node
|
||
|
||
```latex
|
||
\sum{I_{IN}} = \sum{I_{OUT}}
|
||
```
|
||
**Example:**
|
||
![](Resources/electricity/assets/kirchhoffs-law-1.svg)
|
||
|
||
For this circuit kirchhoffs law states that:
|
||
|
||
```latex
|
||
\displaystyle i1 = i2 + i3 + i4
|
||
```
|
||
|
||
## Conservation of Energy (Second Law)
|
||
All the potential differences around the loop must sum to zero.
|
||
|
||
```latex
|
||
\displaystyle \sum{V} = 0
|
||
```
|
||
|
||
## Capacitors in Series
|
||
|
||
```latex
|
||
\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...
|
||
```
|
||
|
||
## Impedance in a Circuit
|
||
```latex
|
||
Z = \sqrt{R^2 + X^2} \\
|
||
\textit{}\\
|
||
X = X_{L} - X_{C} \\
|
||
```
|
||
|
||
## Capacitive Reactance
|
||
|
||
```latex
|
||
\displaystyle X_{c} = \frac{1}{2 \pi fC}
|
||
```
|
||
|
||
## Inductive Reactance
|
||
```latex
|
||
\displaystyle X_{l} = 2\pi fL
|
||
```
|
||
|
||
## Analog Filters
|
||
|
||
## Cutoff Frequency for RC Filters
|
||
```latex
|
||
\displaystyle f_{c} = \frac{1}{2\pi RC}
|
||
```
|
||
|
||
## Cutoff Frequency for RL Filters
|
||
```latex
|
||
\displaystyle f_{c} = \frac{R}{2\pi L}
|
||
```
|
||
|
||
## Cutoff Frequency for multiple Low Pass Filters
|
||
```latex
|
||
\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}
|
||
```
|
||
|
||
Where $n$ = Number if **identical** filters
|
||
|
||
## Resonance Frequency for RLC Low Pass Filter
|
||
```latex
|
||
\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}
|
||
```
|
||
|
||
## Center Frequency with Fc and Fh
|
||
```latex
|
||
f_{c} = \sqrt{f_{h}*f_{l}}
|
||
```
|
||
|
||
## Filter Response for RC Filters
|
||
```latex
|
||
V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})
|
||
```
|
||
|
||
## Cutoff Frequency $\pi$ Topology Filter
|
||
When the two capacitors have the same capacitance, it can be calculated like this:
|
||
```latex
|
||
\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}
|
||
```
|
||
## Angular Frequency ($\omega$)
|
||
```latex
|
||
\omega = 2\pi f = \frac{2\pi}{T}
|
||
```
|
||
|
||
## RLC Series Response
|
||
|
||
This is basically Ohms Law:
|
||
|
||
```latex
|
||
\displaystyle V = IZ
|
||
```
|
||
|
||
Where $Z$ is the impedance:
|
||
|
||
```latex
|
||
Z = \sqrt{R^2 + (X_L - X_C)^2}
|
||
```
|
||
|
||
$X_L$ = Reactive Inductance
|
||
$X_C$ = Reactive Capacativw
|
||
|
||
## Current through a transistor
|
||
|
||
```latex
|
||
\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}
|
||
```
|
||
|
||
## Gain Bandwidth Product
|
||
```latex
|
||
GBP = A_V * f_c
|
||
```
|
||
|
||
```latex
|
||
\displaystyle f_c = \frac{GBP}{A_V}
|
||
```
|
||
|
||
## Bandwidth of Multiple OpAmps
|
||
|
||
Where $n$ = number of stages
|
||
and $BW$ = Bandwidth of single op-amp
|
||
|
||
```latex
|
||
BW_E = BW\sqrt{2^\frac{1}{n}-1}
|
||
```
|
||
|
||
## Power lost in a Resistor
|
||
```latex
|
||
P = IV = I^2R = \frac{V^2}{R}
|
||
```
|