210 lines
3.9 KiB
Markdown
210 lines
3.9 KiB
Markdown
High pass filters let through only signals with high frequencies and attenuate low frequency one.
|
||
|
||
Because high pass filters work exactly like low pass filters but in reverse, lets only do one example here:
|
||
|
||
**Example:**
|
||
|
||
![[rc-high-pass-example.png|300]]
|
||
|
||
Lets first calculate the cutoff frequency of this filter:
|
||
|
||
[[Resources/electricity/formulas|Formulas]]
|
||
|
||
<!-- #include [[Resources/electricity/formulas]] -->
|
||
---
|
||
cards-deck: electricity
|
||
---
|
||
|
||
## Ohms Law
|
||
|
||
*Solve for voltage:*
|
||
#card
|
||
|
||
$\displaystyle V = I*R$
|
||
^1654598090369
|
||
|
||
*Solve for resistance:*
|
||
#card
|
||
|
||
$\displaystyle R = \frac{V}{I}$
|
||
^1654598090389
|
||
|
||
*Solve for current*
|
||
#card
|
||
|
||
$\displaystyle I = \frac{V}{R}$
|
||
^1654598090398
|
||
|
||
## Resistors in Series
|
||
#card
|
||
|
||
$R = R1 + R2 + R3 ...$
|
||
^1654598090404
|
||
|
||
## Resistors in Parallel
|
||
#card
|
||
|
||
$$
|
||
\begin{flalign}
|
||
&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\
|
||
\\
|
||
&\textit{For two resistors in parallel:} &\\
|
||
\\
|
||
&R = \frac{R1 * R2}{R1 + R2} &\\\
|
||
\end{flalign}
|
||
$$
|
||
***Tip:***
|
||
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
|
||
## Voltage Divider
|
||
#card
|
||
^1654598090410
|
||
|
||
$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$
|
||
|
||
## Thevenin’s Theorem
|
||
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
|
||
|
||
## Conservation of Charge (First Law)
|
||
#card
|
||
|
||
All current entering a node must also leave that node
|
||
$$
|
||
\begin{flalign}
|
||
\sum{I_{IN}} = \sum{I_{OUT}}&&
|
||
\end{flalign}
|
||
$$
|
||
**Example:**
|
||
^1654598090415
|
||
|
||
![](kirchhoffs-law-01.svg)
|
||
|
||
For this circuit kirchhoffs law states that:
|
||
|
||
$\displaystyle i1 = i2 + i3 + i4$
|
||
|
||
## Conservation of Energy (Second Law)
|
||
All the potential differences around the loop must sum to zero.
|
||
|
||
$\displaystyle \sum{V} = 0$
|
||
|
||
## Capacitors in Series
|
||
#card
|
||
|
||
$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$
|
||
^1654598090421
|
||
|
||
## Impedance in a Circuit
|
||
#card
|
||
$$
|
||
\begin{flalign}
|
||
&Z = \sqrt{R^2 + X^2} &\\\
|
||
\\
|
||
&X = X_{L} - X_{C} \\
|
||
\end{flalign}
|
||
$$
|
||
## Capacitive Reactance
|
||
#card
|
||
^1654598090426
|
||
|
||
$\displaystyle X_{c} = \frac{1}{2 \pi fC}$
|
||
|
||
## Inductive Reactance
|
||
#card
|
||
|
||
$\displaystyle X_{l} = 2\pi fL$
|
||
^1654598090432
|
||
|
||
## Analog Filters
|
||
|
||
## Cutoff Frequency for RC Filters
|
||
#card
|
||
|
||
$\displaystyle f_{c} = \frac{1}{2\pi RC}$
|
||
^1654598090437
|
||
|
||
## Cutoff Frequency for RL Filters
|
||
#card
|
||
|
||
$\displaystyle f_{c} = \frac{R}{2\pi L}$
|
||
^1654598090445
|
||
|
||
## Cutoff Frequency for multiple Low Pass Filters
|
||
$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$
|
||
|
||
Where $n$ = Number if **identical** filters
|
||
|
||
## Resonance Frequency for RLC Low Pass Filter
|
||
#card
|
||
|
||
$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$
|
||
^1654598090452
|
||
|
||
## Center Frequency with Fc and Fh
|
||
#card
|
||
|
||
$f_{c} = \sqrt{f_{h}*f_{l}}$
|
||
^1654598090459
|
||
|
||
## Filter Response for RC Filters
|
||
#card
|
||
|
||
$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$
|
||
^1654598090466
|
||
|
||
## Cutoff Frequency $\pi$ Topology Filter
|
||
#card
|
||
|
||
When the two capacitors have the same capacitance, it can be calculated like this:
|
||
^1654598090479
|
||
|
||
$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$
|
||
|
||
## Angular Frequency ($\omega$)
|
||
#card
|
||
|
||
$\omega = 2\pi f = \frac{2\pi}{T}$
|
||
^1654598090492
|
||
|
||
## RLC Series Response
|
||
|
||
This is basically Ohms Law:
|
||
|
||
$\displaystyle V = IZ$
|
||
|
||
Where $Z$ is the impedance:
|
||
|
||
$Z = \sqrt{R^2 + (X_L - X_C)^2}$
|
||
|
||
$X_L$ = Reactive Inductance
|
||
$X_C$ = Reactive Capacativw
|
||
|
||
## Current through a transistor
|
||
|
||
$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$
|
||
|
||
## Gain Bandwidth Product
|
||
#card
|
||
|
||
$GBP = A_V * f_c$
|
||
^1654598090498
|
||
|
||
$\displaystyle f_c = \frac{GBP}{A_V}$
|
||
|
||
## Bandwidth of Multiple OpAmps
|
||
|
||
Where $n$ = number of stages
|
||
and $BW$ = Bandwidth of single op-amp
|
||
|
||
$BW_E = BW\sqrt{2^\frac{1}{n}-1}$
|
||
|
||
## Power lost in a Resistor
|
||
#card
|
||
|
||
$P = IV = I^2R = \frac{V^2}{R}$
|
||
^1654598090504
|
||
<!-- /include -->
|
||
|
||
```latex
|
||
\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001}
|
||
\displaystyle f_{c} = 159154.94 \approx 159.1kHz
|
||
``` |