2022-06-16 14:03:54 +02:00
## Ohms Law
2022-03-20 18:30:04 +01:00
2022-06-16 14:03:54 +02:00
*Solve for voltage:*
2022-03-10 20:49:10 +01:00
2023-04-20 14:25:26 +02:00
```latex
\displaystyle V = I*R
```
2022-03-20 18:30:04 +01:00
2022-06-16 14:03:54 +02:00
*Solve for resistance:*
2022-03-10 20:49:10 +01:00
2023-04-20 14:25:26 +02:00
```latex
\displaystyle R = \frac{V}{I}
```
2022-06-05 18:53:01 +02:00
2022-06-16 14:03:54 +02:00
*Solve for current*
2023-04-20 14:25:26 +02:00
```latex
\displaystyle I = \frac{V}{R}
```
2022-06-05 18:53:01 +02:00
2022-06-16 14:03:54 +02:00
## Resistors in Series
2022-03-10 20:49:10 +01:00
2023-04-20 14:25:26 +02:00
```latex
R = R1 + R2 + R3 ...
```
2022-03-10 20:49:10 +01:00
2022-06-16 14:03:54 +02:00
## Resistors in Parallel
2023-04-20 14:25:26 +02:00
```latex
\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... \\
\textit{}\\
\textit{For two resistors in parallel:}\\
\textit{}\\
R = \frac{R1 * R2}{R1 + R2}
```
2022-03-13 19:17:20 +01:00
***Tip:***
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
2023-04-20 14:25:26 +02:00
2022-06-16 14:03:54 +02:00
## Voltage Divider
2023-04-20 14:25:26 +02:00
```latex
V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})
```
2022-03-10 20:49:10 +01:00
2022-03-20 23:15:38 +01:00
## Thevenin’ s Theorem
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
2022-06-16 14:03:54 +02:00
## Conservation of Charge (First Law)
2022-03-10 20:49:10 +01:00
2022-03-13 19:17:20 +01:00
All current entering a node must also leave that node
2022-03-10 20:49:10 +01:00
2023-04-20 14:25:26 +02:00
```latex
\sum{I_{IN}} = \sum{I_{OUT}}
```
**Example:**
![](Resources/electricity/assets/kirchhoffs-law-1.svg)
2022-03-10 20:49:10 +01:00
For this circuit kirchhoffs law states that:
2022-03-20 18:30:04 +01:00
2023-04-20 14:25:26 +02:00
```latex
\displaystyle i1 = i2 + i3 + i4
```
2022-03-10 20:49:10 +01:00
2022-03-13 19:17:20 +01:00
## Conservation of Energy (Second Law)
All the potential differences around the loop must sum to zero.
2022-03-20 18:30:04 +01:00
2023-04-20 14:25:26 +02:00
```latex
\displaystyle \sum{V} = 0
```
2022-03-10 20:49:10 +01:00
2022-03-15 19:59:12 +01:00
## Capacitors in Series
2023-04-20 14:25:26 +02:00
```latex
\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...
```
2022-03-20 18:30:04 +01:00
2022-06-16 14:03:54 +02:00
## Impedance in a Circuit
2023-04-20 14:25:26 +02:00
```latex
Z = \sqrt{R^2 + X^2} \\
\textit{}\\
X = X_{L} - X_{C} \\
```
2022-06-16 14:03:54 +02:00
## Capacitive Reactance
2022-03-23 16:31:29 +01:00
2023-04-20 14:25:26 +02:00
```latex
\displaystyle X_{c} = \frac{1}{2 \pi fC}
```
2022-03-23 16:31:29 +01:00
2022-06-16 14:03:54 +02:00
## Inductive Reactance
2023-04-20 14:25:26 +02:00
```latex
\displaystyle X_{l} = 2\pi fL
```
2022-03-23 16:31:29 +01:00
2022-06-16 14:03:54 +02:00
## Analog Filters
2022-03-23 16:31:29 +01:00
## Cutoff Frequency for RC Filters
2023-04-20 14:25:26 +02:00
```latex
\displaystyle f_{c} = \frac{1}{2\pi RC}
```
2022-03-23 16:31:29 +01:00
## Cutoff Frequency for RL Filters
2023-04-20 14:25:26 +02:00
```latex
\displaystyle f_{c} = \frac{R}{2\pi L}
```
2022-03-23 16:31:29 +01:00
## Cutoff Frequency for multiple Low Pass Filters
2023-04-20 14:25:26 +02:00
```latex
\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}
```
2022-03-23 16:31:29 +01:00
Where $n$ = Number if **identical** filters
2022-03-30 15:07:33 +02:00
## Resonance Frequency for RLC Low Pass Filter
2023-04-20 14:25:26 +02:00
```latex
\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}
```
2022-03-29 00:02:22 +02:00
2022-03-30 15:07:33 +02:00
## Center Frequency with Fc and Fh
2023-04-20 14:25:26 +02:00
```latex
f_{c} = \sqrt{f_{h}*f_{l}}
```
2022-03-29 00:02:22 +02:00
2022-06-16 14:03:54 +02:00
## Filter Response for RC Filters
2023-04-20 14:25:26 +02:00
```latex
V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})
```
2022-03-29 00:02:22 +02:00
## Cutoff Frequency $\pi$ Topology Filter
When the two capacitors have the same capacitance, it can be calculated like this:
2023-04-20 14:25:26 +02:00
```latex
\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}
```
2022-06-16 14:03:54 +02:00
## Angular Frequency ($\omega$)
2023-04-20 14:25:26 +02:00
```latex
\omega = 2\pi f = \frac{2\pi}{T}
```
2022-03-29 00:02:22 +02:00
2022-06-16 14:03:54 +02:00
## RLC Series Response
2022-03-29 00:02:22 +02:00
This is basically Ohms Law:
2023-04-20 14:25:26 +02:00
```latex
\displaystyle V = IZ
```
2022-03-29 00:02:22 +02:00
Where $Z$ is the impedance:
2023-04-20 14:25:26 +02:00
```latex
Z = \sqrt{R^2 + (X_L - X_C)^2}
```
2022-03-29 00:02:22 +02:00
2022-06-05 18:53:01 +02:00
$X_L$ = Reactive Inductance
$X_C$ = Reactive Capacativw
2022-03-29 00:02:22 +02:00
2022-06-16 14:03:54 +02:00
## Current through a transistor
2022-04-05 11:27:35 +02:00
2023-04-20 14:25:26 +02:00
```latex
\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}
```
2022-06-16 14:03:54 +02:00
2023-04-20 14:25:26 +02:00
## Gain Bandwidth Product
```latex
GBP = A_V * f_c
```
2022-06-05 18:53:01 +02:00
2023-04-20 14:25:26 +02:00
```latex
\displaystyle f_c = \frac{GBP}{A_V}
```
2022-04-05 11:27:35 +02:00
2022-06-16 14:03:54 +02:00
## Bandwidth of Multiple OpAmps
2022-04-05 11:27:35 +02:00
Where $n$ = number of stages
and $BW$ = Bandwidth of single op-amp
2023-04-20 14:25:26 +02:00
```latex
BW_E = BW\sqrt{2^\frac{1}{n}-1}
```
2022-06-05 18:53:01 +02:00
2022-06-16 14:03:54 +02:00
## Power lost in a Resistor
2023-04-20 14:25:26 +02:00
```latex
P = IV = I^2R = \frac{V^2}{R}
```