Files
nodarium/SUMMARY_RUNTIME.md
2026-01-22 18:48:16 +01:00

295 lines
9.3 KiB
Markdown

# Node Compilation and Runtime Execution
## Overview
Nodarium nodes are WebAssembly modules written in Rust. Each node is a compiled WASM binary that exposes a standardized C ABI interface. The system uses procedural macros to generate the necessary boilerplate for node definitions, memory management, and execution.
## Node Compilation
### 1. Node Definition (JSON)
Each node has a `src/input.json` file that defines:
```json
{
"id": "max/plantarium/stem",
"meta": { "description": "Creates a stem" },
"outputs": ["path"],
"inputs": {
"origin": { "type": "vec3", "value": [0, 0, 0], "external": true },
"amount": { "type": "integer", "value": 1, "min": 1, "max": 64 },
"length": { "type": "float", "value": 5 },
"thickness": { "type": "float", "value": 0.2 }
}
}
```
### 2. Procedural Macros
The `nodarium_macros` crate provides two procedural macros:
#### `#[nodarium_execute]`
Transforms a Rust function into a WASM-compatible entry point:
```rust
#[nodarium_execute]
pub fn execute(input: &[i32]) -> Vec<i32> {
// Node logic here
}
```
The macro generates:
- **C ABI wrapper**: Converts the WASM interface to a standard C FFI
- **`execute` function**: Takes `(ptr: *const i32, len: usize)` and returns `*mut i32`
- **Memory allocation**: `__alloc(len: usize) -> *mut i32` for buffer allocation
- **Memory deallocation**: `__free(ptr: *mut i32, len: usize)` for cleanup
- **Static output buffer**: `OUTPUT_BUFFER` for returning results
- **Panic hook**: Routes panics through `host_log_panic` for debugging
- **Internal logic wrapper**: Wraps the original function
#### `nodarium_definition_file!("path")`
Embeds the node definition JSON into the WASM binary:
```rust
nodarium_definition_file!("src/input.json");
```
Generates:
- **`DEFINITION_DATA`**: Static byte array in `nodarium_definition` section
- **`get_definition_ptr()`**: Returns pointer to definition data
- **`get_definition_len()`**: Returns length of definition data
### 3. Build Process
Nodes are compiled with:
```bash
cargo build --release --target wasm32-unknown-unknown
```
The resulting `.wasm` files are copied to `app/static/nodes/` for serving.
## Node Execution Runtime
### Architecture
```
┌─────────────────────────────────────────────────────────────┐
│ WebWorker Thread │
│ ┌─────────────────────────────────────────────────────────┐│
│ │ WorkerRuntimeExecutor ││
│ │ ┌───────────────────────────────────────────────────┐ ││
│ │ │ MemoryRuntimeExecutor ││
│ │ │ ┌─────────────────────────────────────────────┐ ││
│ │ │ │ Node Registry (WASM + Definitions) ││
│ │ │ └─────────────────────────────────────────────┘ ││
│ │ │ ┌─────────────────────────────────────────────┐ ││
│ │ │ │ Execution Engine (Bottom-Up Evaluation) ││
│ │ │ └─────────────────────────────────────────────┘ ││
│ │ └───────────────────────────────────────────────────┘ ││
│ └─────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────┘
```
### 1. MemoryRuntimeExecutor
The core execution engine in `runtime-executor.ts`:
#### Metadata Collection (`addMetaData`)
1. Load node definitions from registry
2. Build parent/child relationships from graph edges
3. Calculate execution depth via reverse BFS from output node
#### Node Sorting
Nodes are sorted by depth (highest depth first) for bottom-up execution:
```
Depth 3: n3 n6
Depth 2: n2 n4 n5
Depth 1: n1
Depth 0: Output
Execution order: n3, n6, n2, n4, n5, n1, Output
```
#### Input Collection
For each node, inputs are gathered from:
1. **Connected nodes**: Results from parent nodes in the graph
2. **Node props**: Values stored directly on the node instance
3. **Settings**: Global settings mapped via `setting` property
4. **Defaults**: Values from node definition
#### Input Encoding
Values are encoded as `Int32Array`:
- **Floats**: IEEE 754 bits cast to i32
- **Vectors**: `[0, count, v1, v2, v3, 1, 1]` (nested bracket format)
- **Booleans**: `0` or `1`
- **Integers**: Direct i32 value
#### Caching
Results are cached using:
```typescript
inputHash = `node-${node.id}-${fastHashArrayBuffer(encoded_inputs)}`
```
The cache uses LRU eviction (default size: 50 entries).
### 2. Execution Flow
```typescript
async execute(graph: Graph, settings) {
// 1. Load definitions and build node relationships
const [outputNode, nodes] = await this.addMetaData(graph);
// 2. Sort nodes by depth (bottom-up)
const sortedNodes = nodes.sort((a, b) => b.depth - a.depth);
// 3. Execute each node
for (const node of sortedNodes) {
const inputs = this.collectInputs(node, settings);
const encoded = concatEncodedArrays(inputs);
const result = nodeType.execute(encoded);
this.results[node.id] = result;
}
// 4. Return output node result
return this.results[outputNode.id];
}
```
### 3. Worker Isolation
`WorkerRuntimeExecutor` runs execution in a WebWorker via Comlink:
```typescript
class WorkerRuntimeExecutor implements RuntimeExecutor {
private worker = new ComlinkWorker(...);
async execute(graph, settings) {
return this.worker.executeGraph(graph, settings);
}
}
```
The worker backend (`worker-runtime-executor-backend.ts`):
- Creates a single `MemoryRuntimeExecutor` instance
- Manages caching state
- Collects performance metrics
### 4. Remote Execution (Optional)
`RemoteRuntimeExecutor` can execute graphs on a remote server:
```typescript
class RemoteRuntimeExecutor implements RuntimeExecutor {
async execute(graph, settings) {
const res = await fetch(this.url, {
method: "POST",
body: JSON.stringify({ graph, settings })
});
return new Int32Array(await res.arrayBuffer());
}
}
```
## Data Encoding Format
### Bracket Notation
Inputs and outputs use a nested bracket encoding:
```
[0, count, item1, item2, ..., 1, 1]
^ ^ items ^ ^
| | | |
| | | +-- closing bracket
| +-- number of items + 1 |
+-- opening bracket (0) +-- closing bracket (1)
```
### Example Encodings
**Float (5.0)**:
```typescript
encodeFloat(5.0) // → 1084227584 (IEEE 754 bits as i32)
```
**Vec3 ([1, 2, 3])**:
```typescript
[0, 4, encodeFloat(1), encodeFloat(2), encodeFloat(3), 1, 1]
```
**Nested Math Expression**:
```
[0, 3, 0, 2, 0, 3, 0, 0, 0, 3, 7549747, 127, 1, 1, ...]
```
### Decoding Utilities
From `packages/utils/src/tree.rs`:
- `split_args()`: Parses nested bracket arrays into segments
- `evaluate_float()`: Recursively evaluates and decodes float expressions
- `evaluate_int()`: Evaluates integer/math node expressions
- `evaluate_vec3()`: Decodes vec3 arrays
## Geometry Data Format
### Path Data
Paths represent procedural plant structures:
```
[0, count, [0, header_size, node_type, depth, x, y, z, w, ...], 1, 1]
```
Each point has 4 values: x, y, z position + thickness (w).
### Geometry Data
Meshes use a similar format with vertices and face indices.
## Performance Tracking
The runtime collects detailed performance metrics:
- `collect-metadata`: Time to build node graph
- `collected-inputs`: Time to gather inputs
- `encoded-inputs`: Time to encode inputs
- `hash-inputs`: Time to compute cache hash
- `cache-hit`: 1 if cache hit, 0 if miss
- `node/{node_type}`: Time per node execution
## Caching Strategy
### MemoryRuntimeCache
LRU cache implementation:
```typescript
class MemoryRuntimeCache {
private map = new Map<string, unknown>();
size: number = 50;
get(key) { /* move to front */ }
set(key, value) { /* evict oldest if at capacity */ }
}
```
### IndexDBCache
For persistence across sessions, the registry uses IndexedDB caching.
## Summary
The Nodarium node system works as follows:
1. **Compilation**: Rust functions are decorated with macros that generate C ABI WASM exports
2. **Registration**: Node definitions are embedded in WASM and loaded at runtime
3. **Graph Analysis**: Runtime builds node relationships and execution order
4. **Bottom-Up Execution**: Nodes execute from leaves to output
5. **Caching**: Results are cached per-node-inputs hash for performance
6. **Isolation**: Execution runs in a WebWorker to prevent main thread blocking