# Ohms Law Solve for voltage: $\displaystyle V = \frac{I}{R}$ *Solve for resistance:* $R = \frac{V}{I}$ _Solve for current_ $$ \begin{flalign} I & = \frac{V}{R} & \end{flalign} $$ # Resistors in Series $R = R1 + R2 + R3 ...$ # Resistors in Parallel $$ \begin{flalign} &\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\ \\ &\textit{For two resistors in parallel:} &\\ \\ &R = \frac{R1 * R2}{R1 + R2} &\\\ \end{flalign} $$ ***Tip:*** If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors. # Kirchhoff's Law ## Conservation of Charge (First Law) All current entering a node must also leave that node $$ \begin{flalign} \sum{I_{IN}} = \sum{I_{OUT}}&& \end{flalign} $$ **Example:** ![](./assets/kirchhoffs-law-01.svg) For this circuit kirchhoffs law states that: $\displaystyle i1 = i2 + i3 + i4$ ## Conservation of Energy (Second Law) All the potential differences around the loop must sum to zero. $\displaystyle \sum{V} = 0$ ## Capacitors in Series $\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$ ### Impedance in a Circuit $$ \begin{flalign} &Z = \sqrt{R^2 + X^2} &\\\ &X = X_{L} - X_{C} \\ \end{flalign} $$