![[op-amp-basic-schematic-symbol.svg]] The operational amplifier has a very high input impedance which makes it very good for amplifying low voltage signals. Basically the OpAmp is a function like this: $\displaystyle Y = A_v (X_1 - X_2)$ Where: $$ \begin{flalign} &Y = \text{Output Voltage}&\\\ &A_v = \text{Open Loop Gain}\\ &X_1 = \text{Input V1 (Non Inverting Input)}\\ &X_2 = \text{Input V2 (Inverting Input)}\\ \end{flalign} $$ # Regions Op Amps functions in different regions, just like diodes, and transistors. ![[op-amp-regions.png|400]] **Linear Region** This is how the Op-Amp normally functions. **Saturation Region** When the output of the op-amp would be higher than $+V_{CC}$ or lower than $-V_{CC}$ the output value is clamped to those values. In real life OpAmps have $A_V$ values as high as $10^8$ or $10^9$ due to this even very small input voltages would quickly leave the linear region. That is why we need **Negative Feedback** To use negative feedback we connect the output of the OpAmp to one of its inputs. This connection is modified by a *feedback factor* ($\beta$) which can be in the range $0 \le \beta \le 1$. Due to this feedback the new formula for the output $V_O$ is now: $$ \begin{flalign} &V_o = A_V * V_\Delta&\\\ \\ &V_- = \beta * V_o\\ &\text{Now we can say that }V_\Delta \text{is equal to:}\\ &V_\Delta = V_+ - \beta *V_o &| \textit{ Solve for }V_o \\ &V_o = \frac{V_+ - V_\Delta}{\beta} \end{flalign} $$ # Non-Inverting Amplifier ```circuitjs $ 64 0.000005 1.0312258501325766 50 5 50 5e-11 a 192 240 304 240 9 15 -15 1000000 4.9999000019999595 5 100000 r 192 320 192 400 0 1000 r 304 320 192 320 0 1000 w 192 320 192 256 0 w 304 240 304 320 0 O 304 240 368 240 1 0 g 192 400 192 432 0 0 v 96 352 96 224 0 0 40 5 0 0 0.5 w 96 224 192 224 2 g 96 352 96 432 0 0 b 144 288 289 401 0 x 264 386 278 389 4 24 β ``` # Buffer (Voltage-Follow) ```circuitjs $ 64 0.000005 1.0312258501325766 50 5 50 5e-11 a 192 240 304 240 9 15 -15 1000000 4.999950000499995 5 100000 w 192 320 192 256 0 w 304 240 304 320 0 O 304 240 368 240 1 0 v 96 304 96 224 0 0 40 5 0 0 0.5 w 96 224 192 224 2 g 96 304 96 352 0 0 w 192 320 304 320 0 ```