# Proof of x² = 2x $$ \begin{flalign} & \frac{d}{dx}(x^2) = 2 &\\\ \\ & f(x) = x^2 &\\\ \\ &f'(x) = \lim_{x \to 0} \frac{f(x+h) - f(x)}{h} \\ \\ &\text{So what is }f(x+h)?\\ &\text{We just replace the x in the base formula with }(x+h)\\ &f(x+h) = (x+h)^2\\ \\ &f'(x) = \lim_{x \to 0} \frac{(x+h)^2-x^2}{h} \\ &f'(x) = \lim_{x \to 0} \frac{x^2+2xh+h^2-x^2}{h} \\ &f'(x) = \lim_{x \to 0} \frac{2xh+h^2}{h} \\ &f'(x) = \lim_{x \to 0} \frac{h(2x+h)}{h} \\ &f'(x) = \lim_{x \to 0} 2x+h \\ \end{flalign} $$ ```desmos-graph left=-2; right=2; bottom=-2; top=2; --- y=x^2 y=2x ```