Analog Electronics Unit 9

Unit 9. Power Supplies in analog systems

Contents

1. Introduction

- **2. Initial Stages** (Transformer, Rectifier, Filter)
- **3. Classification**
- **4. Stabilized power supplies**
- **5. Regulated power supplies**
- **6. Integrated power supplies**
- **7. Decoupling capacitors**
- **8. Non-symmetrical supply**
- **9. Consumption calculation**

1. Introduction

3

Electronic circuits need one or several DC voltage sources to operate correctly.

Voltage supply with batteries:

- •Low autonomy and high cost
- •Acceptable for low consumption

Voltage supply from the net:

- The most common source of primary energy source
- •Alternate sinusoidal voltage
- Net voltage must be converted to DC voltage

1. Introduction

• Adapts voltage and current levels

4

• Stabilizes the signal

2. Initial stages. Transformer

Main functions:

- •Adaptation of the net voltage to the value required by the $load \rightarrow N_1 : N_2$
- Provide galvanic isolation \rightarrow Protection of the user

Several configurations depending on the choosed rectifier:

- Primary-secondary
- •Transformer with tapped secondary (toma intermedia)

2. Initial stages. Transformer

Converts tha AC voltage provided by the trafo into a pulsatory unidirectional voltage with a non-zero medium value.

Half-wave Rectifier

Full-wave Rectifier: Diodes bridge.

• During each hemicycle 2 diodes conduct simultaneously.

- Each diode supports an inverse voltage of the maximum voltage value of the secondary.
- This configuration is the most common.

Full-wave Rectifier: with tapped secondary

- During each hemicycle only one diode conducts.
- Each diode supports an inverse voltage of the double of the maximum voltage value of each winding of the secondary.

10

The selection of the diodes depends on the voltages and currents required in the specific application.

- Average forward current, $I_{F(AV)}$
- Peak working reverse voltage, V_{RWM}
- Repetitive forward peak current, I_{FRM}

"General purpose" diodes are commonly used.

- •Designed to work at low frequencies in rectification applications $(< 400$ Hz).
- They can support currents of 1 to 25 A, with reverse voltages of 50 to 1000 V.
- •Rectifying bridges with 4 diodes are also available as integrated circuits.

2. Initial stages. Filter

2. Initial stages. Filter

2. Initial stages. Filter

Output voltage: exponential and sinusoidal

• The detailed analysis is complex

Aproximation to a triangular waveform \rightarrow **simplification**

- Considers a lineal discharge of the capacitor (RL·C>>T/2)
- Supposes an instantaneous charge of C when the diodes conduct

2. Initial stages. Filter

Supposes discharge of C at constant current.

$$
i_c = i_{load} = I_o
$$

The value of Vr is usually known

- Limited by the specifications
- •Allows the calculation of C
- Tolerances must be considered (±20%)

$$
V_r = \frac{V_o}{2 f R_L C} = \frac{I_o}{2 f C}
$$

2. Initial stages. Filter

$$
I_{D(\text{peak})} \cong \frac{T}{T_1} I_{dc}
$$

4. Stabilized Power Supplies

4. Stabilized Power Supplies

The difference of both voltages is supported by R_S

- *vi* should not be much higher than v_o . Vo=ViRL/(RI+Rs)>Vz
- Election of N_2 : N_1 .

4. Stabilized Power Supplies

Operation Limits

$$
\bullet \ \ I_{z(min)} \leq i_z \leq I_{z(max)}
$$

• Current in R_s : $I_{R(min)} = I_{o(max)} + I_{Z(min)}$

R_s should be big enough:

- Less warming up of the zener
- \bullet V_o is less affected by fluctuations in V_i

Main drawback:

• If the circuit is designed for high I_{o} , the zener diode should support such currents \rightarrow power zener diode

5. Regulated Power Supplies

Limitations of stabilizing circuits:

- The accuracy of the output voltage depends on the features of the used electronic devices.
- Lack of control of the output voltage.

Linear Regulator \rightarrow **mantains constant the output voltage**

• System with negative feedback to mantain constant the output voltage when the load or the input voltage variates.

5. Regulated Power Supplies

21

Two kinds of regulators: series and shunt

Variations in the output voltage provoked by changes in the nonregulated voltage and in the output current are compensated by variations in:

- •The voltage drop of an element situated in series with the load \rightarrow **Series Regulator** (the most common)
- •The current of an element situated in parallel with the load

Shunt Regulator

22

Blocks diagram of a serie regulator:

Feedback: $\wedge V_o \rightarrow$ control $\wedge (V_i \neg V_o) \rightarrow \vee V_o$

Reference circuit:

- Provides a stable reference voltage.
- Usually based on a zener diode.
- Simplest solution \rightarrow zener diode + polarizing resistor.

Sample circuit:

- Provides a signal proportional to the output signal.
- Usually composed by a resistor divider connected to the output.

Error amplifier:

• Compares the sampled voltage with the reference voltage and generates an error signal proportional to the difference.

Control element:

- Recieves the error signal and corrects the variations of the output voltage.
- Is usually composed by a bipolar transistor (NPN usually) connected in series between the input and output of the regulator.

24

• The transistor dissipates the power generated by v_i - v_a .

• Design of
$$
R_S
$$

$$
R_{S(\text{max})} = \frac{V_{i(\text{min})} - V_Z}{I_{Z(\text{min})} + \frac{I_{o(\text{max})}}{\beta + 1}}
$$

• The zener diode does not need to support elevated currents. Feedback: $\uparrow V_o \rightarrow \downarrow V_{BE} \rightarrow \downarrow I_F = (1+\beta)I_{se}e^{VBE/VT} \rightarrow \downarrow I_o \rightarrow \downarrow V_o$

P50. En el circuito de la figura calcular: a) Tensión de salida que fija el regulador en la carga R b) Tensión y corriente en cada una de las resistencias del circuito. Datos: R1 = 3.3 kΩ, R2 = 2.2 kΩ, R3 = 5 kΩ, R4 = 10 kΩ, RL = 2 kΩ Vent = 40 V, V_z = 10 V. Para T1 y T2: V_{BE} = 0.7 V, β *= 100*

OA series regulator: Reference Voltage:

- Simple circuit.
- Select R_3 high enough to reduce the effect of the ripple of v_i .

27

•Also LEDs, rectifying diodes, IC reference circuits (LM336).

OA series regulator:

Sample circuit

- •Very simple circuit.
- The supported current must be negligible versus the load current.

 R_1 and R_2 high values **compared to the load.**

To allow Vo adjustment:

A potentiometer should be used in the voltage divider.

OA series regulator: current limitation

OA series regulator:

Limitation at constant current.

- If $i_o < I_{o(max)}$, then $v_o = v_{o(nom)}$.
- If $i_o > I_{o(max)}$, v_o decreases $\rightarrow 0 \le v_o \le v_{o(nom)}$.

In shortcircuit: $P_{Q1} \approx v_i \cdot I_{o(max)}$

P52. En el circuito de la figura calcular:

- *a)Tensión de salida que fija el regulador*
- *b) Corriente en la resistencia R3*
- *c) Corriente mínima y máxima en la resistencia R4.*
- *d) Calcular la resistencia limitadora Rlim*
- *Podemos despreciar las corrientes por R1 y R2 para facilitar los cálculos.*
- *Datos: R1 = 100 kΩ, R2 = 50 kΩ, R3 = 5 kΩ, R4 = 50 Ω, POT= 0.55 kΩ / 3 W*

Vent = 35 V, V_Z = 10 V, I_{Zmin} = 1 mA, P_{Zmax} = 0.5 W, V_{BE} = 0.6 V

Shunt regulator:

Feedback: $\uparrow \vee_{\circ} \rightarrow$ control $\uparrow \wedge I_{\text{SH}} \rightarrow \downarrow \vee I_{\text{H}} \rightarrow \downarrow \vee I_{\text{O}}$

Shunt regulator:

Feedback: \downarrow R_I \rightarrow \downarrow Vo \rightarrow \downarrow V_{RF} \rightarrow \downarrow I_z \rightarrow \downarrow I_c \rightarrow \uparrow I_I \rightarrow \uparrow V_o V_{o} remains constant (R_I fluctuations compensated by I_L fluctuations)

Feedback: \downarrow V_o $\rightarrow \downarrow$ V₊ $\rightarrow \downarrow$ V_{AO}=V_B $\rightarrow \downarrow$ I_{SH} \rightarrow 个I_I \rightarrow 个V_o

Exercise. OA (741C, ±*15 V, Io-max=25 mA), Rs=1.5* Ω*, Vi=20-22 V, IL=0.8-1.2 A, Vz=5 V, BJT(*β*=100-400, Vbe-on=0.65 V) 1) Design R1 and R2 for Vo=18 V. Calculate: 2) Range of ISH and check the non-saturation of the OA. 3) Maximum power in Rs and BJT.*

They appeared because of the need of regulators in the power supplies.

- First generation \rightarrow components of general application.
- The big demand of specific voltage supplies (5V for instance) led to the manufacturing of fixed voltage regulators with only 3 terminals.
- Low cost, easy to use.
- Later voltage regulators with 3 terminals but with adjustable voltage were developped.
	- Low cost + easy to use + versatility.

Classification:

- •Regulators of multiple terminals.
- •Regulators of 3 terminals:
	- fixed voltage:
		- •positive
		- •negative
	- adjustable voltage:
		- •positive
		- •negative

Regulators of multiple terminals

- •Based on the linear basic regulator.
- Several parts of the circuit are independent and can be connected by the user.
- Most representative examples:
	- µ**A723 (14 terminales) L200 (5 terminales).**

6. Integrated Power Supplies

Regulators of multiple terminals: L200

- An error amplifier
- A reference voltage source
- A transistor as control element
- A transistor to limit current
- A zener diode for specific applications
- A terminal for frequency compensation

14 13 12 11 10 9 7 8 V_{REF} 6 **5 IN+ 12 12 14 NC 723 FC** V_c V_{OUT} V_z **NC V+ V-**

Regulators of multiple terminals

Regulators of 3 terminals

- \triangleright Regulated output.
- \triangleright Simple use and low cost.

 \triangleright Two types:

- •**Fixed regulators:** provide a fixed voltage (positive or negative).
- •**Adajustable regulators**: the output voltage (positive or negative) can be adjusted using external components.

Regulators of 3 terminals

- Regulators 78XX provide positive voltages, whereas 79XX provide negative voltages.
- The last 2 digits XX, indicate the output regulated voltage.

- Datasheets:
	- \bullet LM78XX \Rightarrow National Semiconductor, Fairchild.
	- \bullet UA78XX \Rightarrow Texas Instruments
	- \bullet MC78XX \Rightarrow Motorola, ON Semiconductors,...

Regulators of 3 terminals

Linear basic regulator with additional elements:

- Limitation of the maximum output current as a function of the difference in inputoutput voltage \rightarrow power limitation.
- Thermic protection \rightarrow the control element can be disconnected.
- Error amplifier internally compensated
- Reference voltage of low noise and high stability.

Regulators of 3 terminals. Positive.

- •No external element is needed.
- The input is provided by a non-stabilized voltage supply or by a DC supply.
- The input voltage must be higher than the output, at least 2 or 3V.

Regulators of 3 terminals. Positive.

 \triangleright External elements can be added:

Regulators of 3 terminals. Positive.

- **The selection of N2:N1 is important to minimize the power dissipation.**
- **The capacitor** *C* **assures that** *vi* **never decreases under a specific value.**
	- The discharge or output current is *i o*.

48

Regulators of 3 terminals. Negative.

Series 79XX.

- Similar to the positive regulators 78XX.
- The capacitor in the output assures the stability.
- As in 78XX, C1 is only necessary if the regulator is far away from the filter. C3 improves the transient response.
- All capacitors associated to the regulator should be connected as near as possible from the regulator.

Regulators of 3 terminals.

They simplify the implementation of symmetric supply sources.

This could be achieved with 2 different 78XX, but 2 complete supply sources would be needed:

Using 79XX the design is simpler

6. Integrated Power Supplies

50

Regulators of 3 terminals.

Regulators of 3 terminals. Increase of the output current.

Addition of a transistor and a resistor to increase the output current.

- Transistor \rightarrow supports most of the current supplied to the load.
- Regulator \rightarrow assures the stability of the output voltage.

The minimum difference of input-output voltage increases.

• v_{FB} + minimum voltage drop in the regulator (2 or 3 V).

Regulators of 3 terminals. Increase of the output voltage.

- **With a fixed regulator a different output voltage (from the nominal one) can also be obtained.**
- **Addition of a positive voltage to the reference terminal (Gnd/Common) of the regulator.**
	- The quiescent current (8.5 mA maximum) must be assured.

Regulators of 3 terminals. Elevated input voltages.

- \triangleright In general, the maximum input voltage for a 78XX is 35 V (for 79XX, -35 V).
- \triangleright If the input voltage is higher, a stabilizer can be connected before the regulator.
- \triangleright This solution helps to dissipate less power in the regulator.

Voltage Converters: ICL7660

CMOS power supply circuits Supply voltage conversions: $+1.5V$ to $+10.0V$ $-1.5V$ to $-10.0V$. Voltage doublers

Voltage Converters: ICL7660 as negative converter

CMOS Switches: S1, S3 charge of C1 to Vin S2, S4 Vout=-Vin

Simple negative converter Pin 6 to ground only if V+ < 3.5V

6. Integrated Power Supplies

Voltage Converters: ICL7660 as voltage doubler

 V_F forward voltage of the diode

7. Decoupling capacitors

They operate as charge reservoir (decoupling)

7. Decoupling capacitors

OUTPUT VOLTAGE SWING

8. Non-symmetrical supply

Work out the voltage range at the output V_{OUT}

 $V_{\rm O}$

 $±12.0$

 $±10.0$

 $±13.8$

 $±11.5$

 $±11.5$

 $±10.0$

 $±13.5$

 $±11.5$

 V V

 $R_L \geq 2 k\Omega$

 $R_L \ge 600 \Omega$

Electrical Characteristics, LM741C

Work out the symmetrical input voltage range can process the circuit (typically). RL=100 k^Ω *Work out the range for V_{OUT}*

Work out the current in the zener diode **OP27G**

Estimate the gain of the system (V_{OUT}/V_{IN}) and the maximum *range at the input (typical values)*

The OA supply is +15 V, work out the voltage at the output of the OA. What is the role of C_{IN} *, C1 and* C_0 *? (coupling capacitors, DC biasing)* R_f *Work out the range of V_{IN}* 100k C_{1N} $R₁$ 10_k $c_{\rm o}$ **741C** v_o V_{IN} R_{B} R_{L} $6.2k$ 10_k $R₂$ 100k R3 100k $C₁$ 10μ F

9. Consumption estimation

Absolute Maximum Ratings

Electrical Characteristics, LM741C

9. Consumption estimation

Estimate the current supplied by each supply source when the OA is supplied with [±] *15 V and Vin = +2 V Estimate the power dissipated by the OA. Is the maximum power exceeded? Repeat the calculations when the supply is +30 V and Vin =* [−] *2 V*

9. Consumption estimation

If the input voltage Ve varies between [±]*1 V, estimate: 1) Maximum current consumption (provided by the supply source) 2) Maximum power dissipated by the OA. Check that the maximum power is not exceeded.*

9. Consumption estimation

If the input voltage Ve = −*2 V, estimate:*

1) Maximum current consumption (provided by the supply source)

2) Maximum power dissipated by the OA. Check that the maximum power is not exceeded.

3) Check that the balance of dissipated powers and provided by all the components of the circuit.

