![[op-amp-basic-schematic-symbol.svg]] The operational amplifier has a very high input impedance which makes it very good for amplifying low voltage signals. Basically the OpAmp is a function like this: $\displaystyle Y = A_v (X_1 - X_2)$ Where: $$ \begin{flalign} &Y = \text{Output Voltage}&\\\ &A_v = \text{Open Loop Gain}\\ &X_1 = \text{Input V1 (Non Inverting Input)}\\ &X_2 = \text{Input V2 (Inverting Input)}\\ \end{flalign} $$ # Regions Op Amps functions in different regions, just like diodes, and transistors. ![[op-amp-regions.png|400]] **Linear Region** This is how the Op-Amp normally functions. **Saturation Region** When the output of the op-amp would be higher than $+V_{CC}$ or lower than $-V_{CC}$ the output value is clamped to those values. In real life OpAmps have $A_V$ values as high as $10^8$ or $10^9$ due to this even very small input voltages would quickly leave the linear region. That is why we need **Negative Feedback** To use negative feedback we connect the output of the OpAmp to one of its inputs. This connection is modified by a *feedback factor* ($\beta$) which can be in the range $0 \le \beta \le 1$. Due to this feedback the new formula for the output $V_O$ is now: $$ \begin{flalign} &V_o = A_V * V_\Delta&\\\ \\ &V_- = \beta * V_o\\ &\text{Now we can say that }V_\Delta \text{is equal to:}\\ &V_\Delta = V_+ - \beta *V_o &| \textit{ Solve for }V_o \\ &V_o = \frac{V_+ - V_\Delta}{\beta} \end{flalign} $$ # Non-Inverting Amplifier ```circuitjs $ 64 0.000005 1.0312258501325766 50 5 50 5e-11 a 192 240 304 240 9 15 -15 1000000 4.9999000019999595 5 100000 r 192 320 192 400 0 1000 r 304 320 192 320 0 1000 w 192 320 192 256 0 w 304 240 304 320 0 O 304 240 368 240 1 0 g 192 400 192 432 0 0 v 96 352 96 224 0 0 40 5 0 0 0.5 w 96 224 192 224 2 g 96 352 96 432 0 0 b 144 288 289 401 0 x 264 386 278 389 4 24 β x 240 345 252 348 4 12 Rf x 160 363 176 366 4 12 Rg ``` What is the closed loop gain of this circuit? $$ \begin{flalign} &V_- = V_+ = V_s&\\\ &V_- \text{is the output of a voltage divider}\\ \end{flalign} $$ Because $V_-$ is equal to $V_+$ and $V_- = V_s = V_o (\frac{R_g}{R_G+R_F})$ t If we solve that equation for $\frac{V_O}{V_s}$ we get the following formula: $\displaystyle Gain =\frac{V_o}{V_s} = 1+\frac{R_F}{R_G}$ # Buffer (Voltage-Follow) This circuit is usefull, because the output always replicates the voltage at the input. For example if you connect the output of a voltage divider you can drive a load wth $V_o$ and the impedance in the Load will not change the $V_o$ ```circuitjs $ 64 0.000005 1.0312258501325766 50 5 50 5e-11 a 192 240 304 240 9 15 -15 1000000 4.999950000499995 5 100000 w 192 320 192 256 0 w 304 240 304 320 0 O 304 240 368 240 1 0 v 96 304 96 224 0 0 40 5 0 0 0.5 w 96 224 192 224 2 g 96 304 96 352 0 0 w 192 320 304 320 0 ``` # Inverting Amplifier ```circuitjs $ 64 0.000005 1.0312258501325766 50 5 50 5e-11 v 48 304 48 192 0 0 40 5 0 0 0.5 r 176 192 96 192 0 1000 w 176 224 176 304 0 g 176 304 176 352 0 0 g 48 304 48 352 0 0 r 176 112 336 112 0 1000 w 336 112 336 208 0 w 176 192 176 112 0 w 336 208 416 208 0 g 416 320 416 352 0 0 p 416 208 416 320 1 0 0 x 249 86 261 89 4 12 Rf x 129 166 141 169 4 12 Ri a 176 208 336 208 8 15 -15 1000000 0.00004999900001999959 0 100000 w 96 192 48 192 2 ``` $$ \begin{flalign} &\frac{V_o}{V_S} = -\frac{R_F}{R_I}&\\\ \end{flalign} $$ # Difference Amplifier ```circuitjs $ 64 0.000005 1.0312258501325766 50 5 50 5e-11 R 144 192 96 192 0 0 40 5 0 0 0.5 R 144 224 96 224 0 0 40 4 0 0 0.5 r 144 192 224 192 0 1000 r 144 224 224 224 0 1000 a 224 208 352 208 8 15 -15 1000000 2.000009999800004 2 100000 r 224 128 352 128 0 1000 w 352 128 352 208 0 w 224 192 224 128 0 w 352 208 400 208 0 p 400 208 400 320 1 0 0 g 400 320 400 352 0 0 r 224 224 224 320 0 1000 g 224 320 224 352 0 0 x 176 171 192 174 4 12 R1 x 176 244 192 247 4 12 R1 x 199 279 215 282 4 12 R2 x 279 148 295 151 4 12 R2 ``` $\displaystyle V_O = \frac{R2}{R1}(V_2-V_1)$