--- cards-deck: electricity --- ## Ohms Law *Solve for voltage:* #card $\displaystyle V = I*R$ ^1654598090369 *Solve for resistance:* #card $\displaystyle R = \frac{V}{I}$ ^1654598090389 *Solve for current* #card $\displaystyle I = \frac{V}{R}$ ^1654598090398 ## Resistors in Series #card $R = R1 + R2 + R3 ...$ ^1654598090404 ## Resistors in Parallel #card $$ \begin{flalign} &\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\ \\ &\textit{For two resistors in parallel:} &\\ \\ &R = \frac{R1 * R2}{R1 + R2} &\\\ \end{flalign} $$ ***Tip:*** If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors. ## Voltage Divider #card ^1654598090410 $V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$ ## Thevenin’s Theorem States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load. ## Conservation of Charge (First Law) #card All current entering a node must also leave that node $$ \begin{flalign} \sum{I_{IN}} = \sum{I_{OUT}}&& \end{flalign} $$ **Example:** ^1654598090415 ![](kirchhoffs-law-01.svg) For this circuit kirchhoffs law states that: $\displaystyle i1 = i2 + i3 + i4$ ## Conservation of Energy (Second Law) All the potential differences around the loop must sum to zero. $\displaystyle \sum{V} = 0$ ## Capacitors in Series #card $\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$ ^1654598090421 ## Impedance in a Circuit #card $$ \begin{flalign} &Z = \sqrt{R^2 + X^2} &\\\ \\ &X = X_{L} - X_{C} \\ \end{flalign} $$ ## Capacitive Reactance #card ^1654598090426 $\displaystyle X_{c} = \frac{1}{2 \pi fC}$ ## Inductive Reactance #card $\displaystyle X_{l} = 2\pi fL$ ^1654598090432 ## Analog Filters ## Cutoff Frequency for RC Filters #card $\displaystyle f_{c} = \frac{1}{2\pi RC}$ ^1654598090437 ## Cutoff Frequency for RL Filters #card $\displaystyle f_{c} = \frac{R}{2\pi L}$ ^1654598090445 ## Cutoff Frequency for multiple Low Pass Filters $\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$ Where $n$ = Number if **identical** filters ## Resonance Frequency for RLC Low Pass Filter #card $\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$ ^1654598090452 ## Center Frequency with Fc and Fh #card $f_{c} = \sqrt{f_{h}*f_{l}}$ ^1654598090459 ## Filter Response for RC Filters #card $V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$ ^1654598090466 ## Cutoff Frequency $\pi$ Topology Filter #card When the two capacitors have the same capacitance, it can be calculated like this: ^1654598090479 $\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$ ## Angular Frequency ($\omega$) #card $\omega = 2\pi f = \frac{2\pi}{T}$ ^1654598090492 ## RLC Series Response This is basically Ohms Law: $\displaystyle V = IZ$ Where $Z$ is the impedance: $Z = \sqrt{R^2 + (X_L - X_C)^2}$ $X_L$ = Reactive Inductance $X_C$ = Reactive Capacativw ## Current through a transistor $\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$ ## Gain Bandwidth Product #card $GBP = A_V * f_c$ ^1654598090498 $\displaystyle f_c = \frac{GBP}{A_V}$ ## Bandwidth of Multiple OpAmps Where $n$ = number of stages and $BW$ = Bandwidth of single op-amp $BW_E = BW\sqrt{2^\frac{1}{n}-1}$ ## Power lost in a Resistor #card $P = IV = I^2R = \frac{V^2}{R}$ ^1654598090504