# Inductors Inductors are similar to capacitors, but there are a few key differences: 1. **They store energy in their magnetic field** 2. **They resist to changes in current** 3. ![[../assets/inductor_schematic.png]] **Inductance:** $$ \begin{flalign} &L = \frac{N^2 * A * \micro}{l} &\\\ \\ &L = Inductance \\ &N = \text{Coil Turns} \\ &A = \text{Area of the coild} \\ &\micro = \text{Permeability} \\ &\textit{How easily a magnetic field can be crated} \\ &l = \text{Length of coil} \\ \end{flalign} $$ ### Inductors in Parallel $\displaystyle \frac{1}{L_{t}} =\frac{1}{L_{1}}+\frac{1}{L_{2}}+...+\frac{1}{L_{n}}$ ### Inductive Reactance Is the strength of opposition to alternating current in an inductor, measured in $\ohm$ $$ \begin{flalign} &X_{L} = 2\pi fL&&\\\ &f = Frequency \\ &L = Inductance \end{flalign} $$ **Example:** ```circuitjs $ 1 0.000005 30.13683688681966 45 5 43 5e-11 v 144 256 144 128 0 1 10000 5 0 0 0.5 l 240 128 240 256 0 0.03 -0.004925046545906014 0 w 144 128 240 128 0 w 240 256 144 256 0 o 1 64 0 4099 5 0.025 0 2 1 3 ``` Calculate the Inductive Reactance in this circuit: $$ \begin{flalign} &X_{L} = 2\pi fL &\\\ &f = 10kHz = 10.000Hz\\ &L = 30mH = 0.03H\\ &X_{L} = 2\pi * 10.000 * 0.03 \\ &X_{L} \approx 1885\ohm \end{flalign} $$ **Example 2:** ```circuitjs $ 1 0.000005 30.13683688681966 45 5 43 5e-11 v 96 256 96 128 0 1 200 5 0 0 0.5 l 240 128 240 256 0 0.4 0.00896251184146064 0 w 240 256 96 256 0 r 96 128 240 128 0 200 o 1 64 0 4099 5 0.025 0 2 1 3 ``` Calculate the [[glossary#Impedance Z|Impedance]] in this Circuit: $$ \begin{flalign} Z = \sqrt{R^2 + X^2} \\ X = X_{L} - {X_{C}} \\ \\ X_{L} = 2\pi fL \\ X_{L} = 2\pi * 200Hz * 400mH \\ X_{L} = 2\pi*200*0.4H\\ X_{L} \approx 502.65\ohm\\ \\ Z = \sqrt{200^2+502.65^2}\\ Z \approx 540.97 \ohm \\ \\ I_{RMS} = \frac{I_{max}}{\sqrt{2}} \\ I_{RMS} = \frac{V_{rms}}{Z} \\ V_{RMS} = \frac{5}{\sqrt{2}} \\ V_{RMS} \approx 3.53V \\ I_{RMS} = \frac{3.53}{540.97} \\ I_{RMS} \approx 6.5mA\\ I_{max} = 0.0065 * \sqrt{2} \\ I_{max} \approx 9.12mA \\ \end{flalign} $$