# Kirchhoffs Law ### Example 1 **Example:** ![](../assets/kirchhoffs-law-02.svg) For this circuit this means. $$ \begin{flalign} V_{R1} = -(I*R1) && \text{Voltage Drop across R}_{1} \\ V_{R2} = -(I*R2) && \text{Voltage Drop across R}_{2}\\ \\ V_{S} - IR_{1} - IR_{2} &= 0 & | + IR_{1} + IR_{2}\\ V_{S} &= IR_{1} + IR_{2} \\ \\ V_{S} &= I(R_{1}+R_{2}) \\ V_{S} &= I*R_{t} \\ \end{flalign} $$ We can change that formula around to find out the current of the entire circuit, aswell as current through single resistors $$ \begin{flalign} I &= I*R_{t} = \frac{V_{S}}{R_{t}} = \frac{V_{S}}{R_{1}+R_{2}}\\ \\ VR_{1} &= V_{S}(\frac{R1}{R1+R2})\\ VR_{2} &= V_{S}(\frac{R2}{R1+R2})\\ \\ VR_{1} &= 5(\frac{500}{500+1500})\\ VR_{1} &= 1.25v&\\ \\ VR_{2} &= 5(\frac{1500}{500+1500})\\ VR_{2} &= 3.75v \end{flalign} $$ ### Example 2 ```circuitjs $ 1 0.000005 10.20027730826997 50 5 43 5e-11 v 192 288 192 112 0 0 40 10 0 0 1 x 125 208 167 211 4 24 10V r 192 112 336 112 0 10 r 336 112 480 112 0 20 w 480 112 480 288 0 r 336 112 336 288 0 50 w 480 288 336 288 0 w 336 288 192 288 0 x 304 204 319 207 4 12 R3 x 256 140 271 143 4 12 R1 x 400 138 415 141 4 12 R2 x 332 104 340 107 4 12 A x 332 304 340 307 4 12 B x 205 102 215 105 4 12 I1 x 467 105 477 108 4 12 I2 x 346 276 356 279 4 12 I3 ``` In this circuit we have three major loops we can apply [[formulas#Conservation of Energy Second Law|Kirchhoffs Second Law]] to, the one on the left, the one on the right and the most outer one. We can also use [[formulas#Conservation of Charge First Law | Kirchhoffs First Law]] for the node title **A**. $$ \begin{flalign} &\textit{Node A:} \\\ & I_{1} = I_{2}+I_{3} \\ \\ &\textit{Left Loop:} \circlearrowright &\\ & 10_{v} - I_{1}*R_{1} - I_{3}*R_{3} = 0& \\ \\ &\textit{Right Loop} \circlearrowleft &\\ &I_{2}*R_{2} - I_{3}*R_{3} = 0; &\\ \\ &\textit{Outer Loop:} \circlearrowright &\\ & 10_{v} - I_{1}*R_{1} - I_{2}*R_{2} = 0& \\ \\ \end{flalign} $$ Now if we would like to find out I2 for example we can use the Right Loop Formula to do so: $$ \begin{flalign} & \textit{Right Loop} \circlearrowleft &\\ & I_{2}*R_{2} - I_{3}*R_{3} = 0 &&| + I_{3}*R_{3}\\\ \\ & I_{2}*R_{2} = I_{3}*R_{3} &&| \div R_{2} \\ \\ & I_{2} = \frac{I_{3}*R_{3}}{R_{2}} &&| \text{ Input Numbers } \\ \\ & I_{2} = \frac{I_{3}*5}{2} &&| \text{ Simplify} \\ \\ & I_{2} = \frac{5I_{3}}{2} &&| \text{ Simplify} \\ \\ &\textit{LeftLoop:} \\ & 10 - I_{1}*R_{1} - I_{3}*R_{3} = 0&&| \text{ Replace I1 with node a} \\ & 10 - (I_{2}+I_{3})*R_{1} - I_{3}*R_{3} = 0 &&| \text{ Replace I2 with previous} \\ \\ & 10 - (\frac{5I_{3}}{2}+I_{3})*R_{1} - I_{2}*R_{2} = 0 \end{flalign} $$ On the last formula we only have one unknown variable, which is $I_{3}$ so lets solve for that. $$ \begin{flalign} & 10 - (\frac{5I_{3}}{2}+I_{3})R_{1} - I_{3}R_{3} = 0 &&| \text{ Replace Variables}\\\ \\ & 10 - (2.5I_{3}+I_{3})10 - 50I_{3} = 0 && \\ \\ & 10 - 35I_{3} - 50I_{3} = 0 &&\\ & 10 - 85I_{3} = 0 && | +85I_{3}\\ & 10 = 85I_{3} && | \div 85 \\ & 0.117647059 \approx I_{3} \\ & 117.64mA = I_{3} \end{flalign} $$ Now lets found out $I_{2}$ aswell $$ \begin{flalign} I_{2} = \frac{I_{3}*5}{2} &&\\ I_{2} = \frac{0.11764 * 5}{2} &&\\ \\ I_{2} \approx 0.2941 && \\ \\ I_2 \approx 294mA && \\ \end{flalign} $$