# Gaussian Method ## 1.17 Solving ### a. $$ \begin{flalign} 2x + 3y &= 13 &\\\ x - y &= -1\\ &\rightarrow (2p2 - p1) &\\\ 5y &= 15 \\ x - y &= -1 \\ &\rightarrow (\text{swap } p1 / p2) &\\\ x - y &= -1 \\ 5y &= 15 \\ \\ y &= 3 \\ x &= 2 \\ \end{flalign} $$ ### b. $$ \begin{flalign} x - z &= 0 &\\\ 3x + y &= 1 \\ -x + y + z &= 4\\ \\ \rightarrow& p3 + p1 \\ x - z &= 0 \\ 3x + y &= 1 \\ y &= 4\\ \\ x = -1\\ y = 4\\ z = -1 \end{flalign} $$ ## Finding type of solutions ## 1.18 ### a. $$ \begin{flalign} −3x + 2y &= 0 &\\\ −2y &= 0 \\ &\rightarrow \text{One solution} \end{flalign} $$ ### b. $$ \begin{flalign} x + y &= 4 &\\ y − z &= 0 \\ &\rightarrow \text{Infinitely many, now row leading with z} \end{flalign} $$ $$ \begin{flalign} −3x + 2y &= 0 &\\\ −2y &= 0 \\ &\rightarrow \text{One solution} \end{flalign} $$ ## 1.19 ## a. $$ \begin{flalign} 2x + 2y &= 5 &\\\ x - 4y &= 0 \\ \rightarrow & -\frac{1}{2}p1 + p2 \\ 2x + 2y &= 5 &\\\ - 5y &= -2.5 \\ \\ y &= \frac{1}{2}\\ x &= 2 \end{flalign} $$