# Voltage Divider ## Simple Voltage Divider This is sort of unrealistic because there is no current flowing out of the voltage divider on the right side: ![Voltage Divider](./voltage-divider.svg) #### Equation $$ \begin{flalign} Vout & =\text{Vin }x*(\frac{R2}{R1+R2})&\\ \end{flalign} $$ ## Voltage Divider with Load When the output of the voltage divider is connected to something the current drops on the output, as that something uses some of it. ![Voltage Divider](./voltage-divider-load.svg) The load is connected in parallel to R2, so we can calculate it as a parallel resistor. The new Equation: $$ \begin{flalign} Vout & =\text{Vin }x*(\frac{R2 || RL}{R1+R2 || RL})&\\ \end{flalign} $$ ### Example Lets calculate the current in this circuit: ![Voltage Divider Load Example](./voltage-divider-load-example.svg) 1. We calculate the Resistance in the subcircuit (R2 and RL) as they are connected in parallel which means $$ \begin{align} \frac{1}{Re}&=\frac{1}{R2}+\frac{1}{RL} &\textit{Replace Variables}\\ \frac{1}{Re}&=\frac{1}{100}+\frac{1}{150} &\textit{Add Fractions}\\ \frac{1}{Re}&=\frac{1}{60} &\textit{* Re}\\ 1&=\frac{Re}{60} &\textit{* 60}\\ 60&=Re \\ \end{align} $$ The simplified circuit now looks like this; ![Voltage Divider Load Example](./voltage-divider-load-example-2.svg) Now we can easily calculate the Resistance in the circuit With the resistance we can now calculate the current inside the load circuit by using the simple voltage divider equation: $$ \begin{flalign} Vout &=\text{Vin }x*(\frac{Re}{R1+Re})&\\ Vout &=5*(\frac{60}{100+60})&\\ Vout &=5*(\frac{60}{100+60})&\\ Vout &=1.875v \end{flalign} $$