
Visual Programming Languages: A SurveyCS 263 Final ProjectMarat BoshernitsanMichael DownesComputer Science DivisionUniversity of California, BerkeleyBerkeley, CA 94720December 16, 1997AbstractOver the past ten years, frequent increases in computer processing speed and graphics display capabilitieshave made possible a great deal of research and experimentation in the �eld of visual programming lan-guages. A variety of di�erent design methodologies have arisen from these research e�orts, and numerousvisual programming systems have been developed to address both speci�c application areas, such as userinterface design and physical simulation, and more general programming tasks. We present a survey ofthe �eld of visual programming languages beginning with an historical overview of some of the pioneer-ing e�orts in the �eld. In addition, we present di�erent classi�cations of visual programming languages,touch on implementation and design issues, and discuss e�orts to formalize the theoretical basis for visuallanguages. We also discuss and examine a variety of the more important projects in the �eld over the lastfew years.0The authors can be reached at: fmdownes,maratbg@CS.Berkeley.EDU. An on-line version of this paper can befound on the WWW page: http://www.cs.berkeley.edu/~maratb/cs263/paper.html.1



1 IntroductionFrom cave paintings to hieroglyphics to paintings of Campbell's soup cans, humans have longcommunicated with each other using images. The �eld of visual programming languages asks:why, then, do we persist in trying to communicate with our computers using textual programminglanguages? Would we not be more productive and would the power of modern computers not beaccessible to a wider range of people if we were able to instruct a computer by simply drawingfor it the images we see in our mind's eye when we consider the solutions to particular problems?Obviously, proponents of visual programming languages (VPLs) argue that the answer to boththese questions is yes.The questions above highlight the primary motivations for most research into VPLs. First,many people think and remember things in terms of pictures. They relate to the world in an in-herently graphical way and use imagery as a primary component of creative thought [Smith 1975].In addition, textual programming languages have proven to be rather di�cult for many creativeand intelligent people to learn to use e�ectively. Reducing or removing entirely the necessity oftranslating visual ideas into somewhat arti�cial textual representations can help to mitigate thissteep learning curve problem. Furthermore, a variety of applications, including scienti�c visualiza-tion and interactive simulation authoring, lend themselves particularly well to visual developmentmethods.The sections which follow present a survey of the �eld of visual programming languages whichhas emerged in response to the issues mentioned above. We begin with a discussion of the historicaltrends and early work which laid the foundations for modern research in the �eld (Section 2).Section 3 provides a description of a taxonomy for visual languages. We follow with a primer onthe main theoretical aspects of VPLs in Section 4, and briey discuss a variety of language issuesin Section 5. We then clarify the topics discussed in previous sections by presenting examplesof important and interesting VPLs (Section 6). Finally, we share some concluding remarks andthoughts on future work (Section 7).2 History of Visual Programming LanguagesThe �eld of visual programming has grown from a marriage of work in computer graphics, pro-gramming languages, and human-computer interaction. It should come as no surprise, then, thatmuch of the seminal work in the �eld is also viewed as pioneering work in one of the other disci-plines. Ivan Sutherland's groundbreaking Sketchpad system stands out as the best example of thistrend [Sutherland 1963]. Sketchpad, designed in 1963 on the TX-2 computer at MIT, has beencalled the �rst computer graphics application. The system allowed users to work with a light-pen to create 2D graphics by creating simple primitives, like lines and circles, and then applyingoperations, such as copy, and constraints on the geometry of the shapes. Its graphical interfaceand support for user-speci�able constraints stand out as Sketchpad's most important contribu-tions to visual programming languages. By de�ning appropriate constraints, users could developstructures such as complicated mechanical linkages and then move them about in real time. Wewill see the idea of visually speci�ed constraints and constraint-oriented programming resurfacein a number of later VPLs. Ivan Sutherland's brother, William, also made an important earlycontribution to visual programming in 1965, when he used the TX-2 to develop a simple visualdataow language. The system allowed users to create, debug, and execute dataow diagrams ina uni�ed visual environment [Najork 1995].The next major milestone in the genesis of VPLs came in 1975 with the publication ofDavid Can�eld Smith's PhD dissertation entitled \Pygmalion: A Creative Programming Envi-2



ronment" [Smith 1975]. Smith's work marks the starting point for a number of threads of researchin the �eld which continue to this day. For example, Pygmalion embodied an icon-based program-ming paradigm in which the user created, modi�ed, and linked together small pictorial objects,called icons, with de�ned properties to perform computations. Much work has since gone intoformalizing icon theory, as will be discussed below, and many modern VPLs employ an icon-basedapproach. Pygmalion also made use of the concept of programming-by-example wherein the usershows the system how to perform a task in a speci�c case and the system uses this information togenerate a program which performs the task in general cases. In Smith's system, the user sets theenvironment to \remember" mode, performs the computation of interest, turns o� \remember"mode, and receives as output a program, in a simple assembly-like subset of Smalltalk, whichperforms the computation on an arbitrary input.3 Classi�cation of Visual Programming LanguagesAs the �eld of VPLs has matured, more and more interest has been focused on creating a ro-bust, standardized classi�cation for work in the area. Such a classi�cation system not only aidsresearchers in �nding related work but also provides a baseline with which to compare and eval-uate di�erent systems. Some of the most important names in the �eld, including Chang, Shu,and Burnett, have worked on identifying the de�ning characteristics of the major categories ofVPLs [Chang 1987, Shu 1986, Burnett & Baker 1994]. The following presents a summary of theclassi�cation scheme discussed below:1. Purely visual languages2. Hybrid text and visual systems3. Programming-by-example systems4. Constraint-oriented systems5. Form-based systemsNote that the categories are by no means mutually exclusive. Indeed, many languages can beplaced in more than one category.The single most important category has to be purely visual languages. Such languages arecharacterized by their reliance on visual techniques throughout the programming process. Theprogrammer manipulates icons or other graphical representations to create a program which issubsequently debugged and executed in the same visual environment. The program is compileddirectly from its visual representation and is never translated into an interim text-based language.Examples of such completely visual systems include VIPR, Prograph, and PICT, the �rst two ofwhich will be discussed in more detail below. In much of the literature in the �eld, this categoryis further subdivided into sections like iconic and non-iconic languages, object-oriented, func-tional, and imperative languages [Chang 1987, Burnett & Baker 1994]. However, for our purposesa slightly larger granularity helps to emphasize the major visually-oriented di�erences betweenvarious VPLs.One important subset of VPLs attempts to combine both visual and textual elements. Thesehybrid systems include both those in which programs are created visually and then translatedinto an underlying high-level textual language and systems which involve the use of graphicalelements in an otherwise textual language. Examples in this category include Rehearsal World3



and work by Erwig et. al. In the former, the user trains the system to solve a particular prob-lem by manipulating graphical \actors," and then the systems generates a Smalltalk program toimplement the solution [Finzer & Gould 1984]. The latter involves work on developing extensionsto languages like C and C++ which allow programmers to intersperse their text code with dia-grams [Erwig & Meyer 1995]. For instance, one can de�ne a linked list data structure textuallyand then perform an operation like deletion of a node by drawing the steps in the process.In addition to these two major categories, many VPLs fall into a variety of smaller classi�ca-tions. For example, a number of VPLs follow in the footsteps of Pygmalion by allowing the userto create and manipulate graphical objects with which to \teach" the system how to perform aparticular task. Rehearsal World, described above, �ts into this category of programming by ex-ample. Some VPLs can trace their lineage back, in part, to Sutherland's constraint manipulationsin Sketchpad. These constraint-oriented systems are especially popular for simulation design, inwhich a programmer models physical objects as objects in the visual environment which are sub-ject to constraints designed to mimic the behavior of natural laws, like gravity. Constraint-orientedsystems have also found application in the development of graphical user interfaces. Thinglab andARK, both primarily simulation VPLs, stand out as quintessential examples of constraint-basedlanguages [Smith 1986, Borning 1981]. A few VPLs have borrowed their visualization and pro-gramming metaphors from spreadsheets. These languages can be classi�ed as form-based VPLs.They represent programming as altering a group of interconnected cells over time and often al-low the programmer to visualize the execution of a program as a sequence of di�erent cell stateswhich progress through time [Burnett & Ambler 1992]. Forms/3 is the current incarnation of theprogenitor of this type of VPL, and it will be covered in detail below. It is important to note thatin each of the categories mentioned above, we can �nd examples of both general-purpose VPLsand languages designed for domain-speci�c applications.The �eld of visual programming has evolved greatly over the last ten years. Continual develop-ment and re�nement of languages in the categories discussed above have led to some work whichwas initially considered to be part of the �eld being reclassi�ed as related to but not actuallyexemplifying visual programming. These VPL orphans, so to speak, include algorithm animationsystems, such as BALSA [Brown & Sedgewick 1984], which provide interactive graphical displaysof executing programs and graphical user interface development tools, like those provided withmany modern compilers including Microsoft Visual C++. Both types of systems certainly includehighly visual components, but they are more graphics applications and template generators thanactual programming languages.4 Theory of Visual Programming LanguagesIn this section, we survey the theoretical advances in the �eld of Visual Programming Languages,mostly derived from early work by S.-K. Chang on generalized icon theory. To set up the frameworkfor the discussion which follows, we put forth some de�nitions from [Chang 1990]:icon (generalized icon)An object with the dual representation of a logical part (the meaning) and a physical part(the image).iconic systemA structured set of related icons.iconic sentence (visual sentence)A spatial arrangement of icons from iconic system.4



visual languageA set of iconic sentences constructed with given syntax and semantics.syntactic analysis (spatial parsing)An analysis of an iconic sentence to determine the underlying structure.semantic analysis (spatial interpretation)An analysis of an iconic sentence to determine the underlying meaning.In this section, we restrict our discussion to two-dimensional visual languages, although everythingthat follows can be generalized to three (and more).4.1 Formal Speci�cation of Visual Programming LanguagesA spatial arrangement of icons that constitutes a visual sentence is a two-dimensional counterpartof a one-dimensional arrangement of tokens in conventional (textual) programming languages. Inthose languages, a program is expressed as a string in which terminal tokens are concatenated toform a sentence whose structure and meaning are discovered by syntactic and semantic analysis,respectively. Thus, the construction rule is implicit in the language and need not be spelled-outas part of the language speci�cation. Conversely, in visual programming languages we distinguishthree construction rules that are used to spatially arrange icons: horizontal concatenation (denotedby &), vertical concatenation (denoted by ^), and spatial overlay (denoted by +).In formalizing visual programming languages, it is customary to distinguish process icons fromobject icons. The former express computations; the latter can be further subdivided into elemen-tary object icons and composite object icons. Elementary object icons identify primitive objects inthe language, whereas composite object icons identify objects formed by a spatial arrangement ofelementary object icons. Finally, the term elementary icons is used to refer to both process iconsand elementary object icons and denotes those icons that are primitives in the language. Since apicture (or, icon, in our case) is worth a thousand words, we attempt to illustrate all of the aboveconcepts in Figure 1 which demonstrates a few icons from the Heidelber icons set [Rhor 1986] anda complete visual sentence.A visual programming language is speci�ed by a triple (ID;G0; B), where ID is the icondictionary, G0 is a grammar, and B is a domain-speci�c knowledge base [Tortora 1990]. The icondictionary is the set of generalized icons each of which is represented by a pair (Xm; Xi), with alogical art Xm (the meaning) and a physical part Xi (the image). The grammar G0 speci�es howcomposite object icons may be constructed from elementary icons by using spatial arrangementoperators. Note that we need to specify spatial composition operators as terminals in the grammarprecisely because they are no longer implicit in the language de�nition. The knowledge base Bcontains domain-speci�c information necessary for constructing the meaning of a given visualsentence. It contains information regarding event names, conceptual relations, names of resultingobjects, and references to the resulting objects.4.2 Analysis of Visual Programming LanguagesAs discussed above, visual sentences are constructed from elementary icons using iconic operators.The syntactic analysis of visual sentences (also known as spatial parsing [Lakin 1986]) is basedupon a number of approaches [Chang 1990]. Here, we present a partial listing of such approaches.Picture-processing grammarsOriginally designed to parse digital pictures on a square grid, these grammars are based on5



(a) (b) (c) (d)

(e)

(g)

(f)

Figure 1: Some icons from the Heidelberg icon set. Elementary object icons: (a) a character,and (b) a selected character. Process icons: (c) insertion operation, and (d) deletion operation.Composite object icons: (e) a string (composed of characters), and (f) a selected string (composedof a character and two selected characters). Visual sentence denoting replacement of a substringin a string.
6



the fact that digital pictures are composed of pixels. These grammars discover the structureof visual sentence by composing individual pixels into recognizable visual elements (lines,arks, etc.) [Golin 1990]. This approach is useful when an iconic system needs to be able torecognize icons with a certain level of error tolerance (e.g. handwritten digits).Precedence grammarsThis spatial parsing grammar can be used for two-dimensional mathematical expressionanalysis and printed-page analysis. Precedence grammars are more suitable for syntacticanalysis of visual sentences constructed from elementary icons and iconic operators. Theparse tree is constructed by comparing precedences of operators in a pattern and subdivingthe pattern into one or more subpatterns.Context-free and context-dependent grammarsThese grammars are used to specify composition of visual sentences using familiar for-malisms, and so many standard methods of parsing such grammars are applicable.Graph grammarsThese are by far the most powerful (albeit least e�cient) speci�cations of visual languages.These formalisms provide for the most means for establishing context relationships and muchrecent work has been devoted to making parsing with graph grammars computationallyfeasible [Rekers & Sch�urr 1995].A parse tree produced by one of the above parsing methods is subsequently analyzed using tra-ditional approaches to semantic analysis (e.g. attribute grammars, ad-hoc tree computations,etc.).Because the �eld of visual programming languages has only recently entered a more or lessmature stage, much of the work on formalization of visual languages is still in its infancy (publishedwithin last 2-3 years) and so we do not survey it here in any detail.5 Visual Language IssuesWe now discuss some common language issues in light of which the following presentation ofvisual languages is cast [Burnett 1994]. These issues are mostly applicable to general-purposevisual languages (suitable for producing executable programs of reasonable size), although certainissues will also be relevant to domain-speci�c languages (designed to accommodate a particulardomain such as software engineering or scienti�c visualization).5.1 Control FlowSimilarly to conventional programming languages, visual languages embrace two notions of owof control in programs: imperative and declarative.With the imperative approach, a visual program constitutes one or more control-ow ordataow diagrams which indicate how the thread of control ows through the program. A particu-lar advantage of such approach is that it provides an e�ective visual representation of parallelism.A disadvantage of this method is that a programmer is required to keep track of how sequencingof operations modi�es the state of the program, which is not always an intended feature of thesystem (especially if it is designed to accommodate novices).An alternative to imperative semantics of ow control is to use a declarative style of program-ming. With this approach, one only needs to worry what computations are performed, and not7



how the actual operations are carried out. Explicit state modi�cation is avoided by using singleassignment: a programmer creates a new object by copying an existing one and specifying thedesired di�erences, rather than modifying the existent object's state. Also, instead of specifying asequence of state changes, the programmer de�nes operations by specifying object dependencies.For example, if the programmer de�nes Y to be X + 1, this explicitly states that Y is to be com-puted using object in X, allowing the system to infer that X's value needs to be computed �rst.Thus, the sequencing of operations is still present, but must be inferred by the system rather thande�ned by the programmer. O� course, special care must be taken by the system that circulardependencies are detected and signaled as errors.5.2 Procedural AbstractionWe distinguish two levels of procedural abstraction. High-level visual programming languagesare not complete programming languages, i.e. it is not possible to write and maintain an en-tire program in such as language and inevitably there's some underlying non-visual modules thatare combined using a visual language. This approach to visual programming is found in variousdomain-speci�c systems such as software maintenance tools and scienti�c visualization environ-ments. At the opposite end of the scale, are low-level visual languages which do not allow theprogrammer to combine �ne-grained logic into procedural modules. This methodology is alsouseful in various domain-speci�c languages such as logic simulators. General-purpose visual pro-gramming languages normally cover the entire spectrum of programming facilities ranging fromlow-level features, including conditionals, recursion, and iteration, to high-level facilities that allowone to combine low-level logic into abstract modules (procedures, classes, libraries, etc.).5.3 Data AbstractionData abstraction facilities are only found in general-purpose programming languages. The notionof data abstraction in visual programming is very similar to the notion of data abstraction inconventional programming languages, with the only requirements being that abstract data typesbe de�ned visually (as opposed to textually), have a visual (iconic) representation, and providefor interactive behavior.6 Visual Programming LanguagesIn this section we present a sample of visual programming languages that illustrate many of theconcepts presented in this paper.6.1 ARKMore than 10 years after its inception, the Alternate Reality Kit (ARK), designed by R. Smith atXerox PARC, remains one of the more unique and visionary domain-speci�c VPLs. ARK, imple-mented in Smalltalk-80, provides users with a 2D animated environment for creating interactivesimulations. The system is intended to be used by non-expert programmers to create simulationsand by an even wider audience to interact with the simulations. In order to help users to un-derstand the fundamental laws of nature, ARK uses a highly literal metaphor in which the usercontrols an on-screen hand which can interact with physical objects, like balls and blocks, whichpossess masses and velocities and with objects, called interactors, representing physical laws, likegravity [Smith 1986]. By giving a kind of physical reality to abstract laws, the system attempts8



Figure 2: Planetary Orbit Simulation in ARK9



to remove some of the mystery surrounding the ways in which such laws interact with objectsand each other. Users can modify any objects in the environment using constructs called messageboxes and buttons, viewing the results of their changes in real time. The simulation runs in an\alternate reality" contained within a window inside an all-encompassing \meta-reality." Thestructure is very much like a modern windows-and-desktop GUI. The programmer can move thehand between alternate realities and pull objects out of the simulation and into meta-reality atanytime. An object which has been lifted out of its alternate reality does not participate in thesimulation until it is dropped out of meta-reality.The example of a user reaching into and removing an object from an alternate reality highlightsone of the more interesting design issues in ARK, namely the necessity to occasionally break withthe highly literal physical world metaphor in order to provide useful functionality. Smith refersto this issue as the tension between magic and literalism in ARK [Smith 1987]. While using ahand which can grab physical objects is a highly literal component of the system, allowing auser to reach into a simulation and alter or remove objects with no regard to the physical lawscurrently at work in the environment clearly provides the user with what could be considered\magical" powers. The question of when to allow a magical event or action in ARK to conictwith the physical metaphor parallels a similar concern in the design of more traditional VPLs.In developing most VPLs, researchers have had to decide on the appropriate uses of text in theirsystem. While it is possible to design a system which uses no text whatsoever, and such systemshave been created, the resulting programs are often very di�cult to read and understand. MostVPLs, even those which are completely visual, use text, at the very least, to label variables andfunctions in programs. Thus designers must face the same problem as was addressed in ARK.They must attempt to balance consistency of visual representation with usability.Although ARK targets a fairly speci�c application domain, it supports a powerful programmingmodel. Programmers can not only create simulations by linking together various pre-built objectsand interactors, but they can also develop new interactors. Programming a simulation, such as theplanetary orbit simulation shown in Figure 2, involves �rst generating physical objects, like balls,from the object warehouse in the lower right corner of the display. By clicking on the objectMenubutton, the programmer can choose to instantiate any object available in the environment. Aftercreating some physical objects, the programmer follows the same procedure to place interactors,like the Motion and Gravity objects in Figure 2, in the alternate reality. The programmer nowuses the messageMenu button to �nd out what sorts of messages to which the various interactorsrespond by placing the button on an interactor and pressing it with the hand. This generates alist of all messages appropriate to that interactor. The programmer chooses one, such as \o�" forthe gravity interactor in the orbit simulation, and the system generates a message box. Messageboxes are objects which can send and receive Smalltalk messages. The programmer links the newmessage box, in our case one which generates the message \o�", to the appropriate interactor byjoining them with a dotted line. The message box can then be collapsed to a single button as inFigure 2. Interactors a�ect all the objects in the same alternate reality, so after specifying all thenecessary controls, a programmer can begin the simulation.It is important to note that all of the objects in the underlying Smalltalk environment areavailable to the ARK programmer. Objects which are not ARK-speci�c appear as representativeobjects, like the TwoVector object in Figure 3. As shown in the �gure, such Smalltalk objectscan be linked with ARK objects in the same way as native objects. The example shown involvesusing a TwoVector object as the input to a button which sets the velocity of a disk.Clearly, ARK interactors behave much like constraints on the physical objects in the alternatereality. Thus, creating and modifying interactors exemplify ARK's constraint-oriented features.A programmer can generate new interactors by creating networks of message boxes. As a simple10



Figure 3: Accessing a Smalltalk object in ARK11



Figure 4: Visualization of program execution in VIPRexample, consider developing a frictional force interactor by creating a message box which adds aforce to an object proportional to the negative of its velocity [Smith 1987]. The message box canbe set to continuously send its message, and when its behavior has been veri�ed, the programmercan convert it to an interactor.6.2 VIPRVIPR, or Visual Imperative PRogramming, developed by Citrin et. al at the University of Coloradorepresents a unique approach to completely visual general purpose programming. Rather thanrelying on icons, forms, or other traditional graphical representations, VIPR uses nested series ofconcentric rings to visualize programs, as shown in Figure 4. Each step in a computation involvesmerging two rings in the presence of a state object which is connected to the outermost ring.One can visualize program execution as walking down a network of pipes which branches o� indi�erent directions while changing the state based on actions written on the inside of the pipes[Citrin et al. 1994].The ongoing development of VIPR has been motivated, in part by a desire to create an object-oriented language which is relatively easy to learn and use. As a result, VIPR includes most ofthe common attributes of object-oriented languages, including inheritance, polymorphism, anddynamic dispatch. The language's semantics have been de�ned to be similar to C++ in order tomake it easier for experienced programmers to read and understand VIPR programs. However, thelanguage is entirely visual, so the semantics of a VIPR program can be understood by applying asmall number of graphical rewrite rules. This relationship to C++ also means that VIPR provides12



Figure 5: Example Control Constructs in VIPR13



Figure 6: Function de�nition and call in VIPRsupport for both low- and high-level programming.Figure 5 presents examples of if/then/else and while/do statements in VIPR. Arrows in the�gures represent substitution. If execution reaches a ring from which an arrow emanates, then thisring can be replaced with the ring structure to which the arrow points. This idea of substitutionbecomes more important in function calls, as shown in Figure 6. The left side of the �gurerepresents a call to the function de�ned on the right. Small circles internal and tangent to ringsindicate parameters, so m is a parameter in the call to fun. Every function must have at least oneparameter, called the return address or continuation parameter. This parameter indicates the nextstatement to execute following the function call. The continuation parameter is always located inthe lower right corner of the function de�nition and function call rings. All other parameters canbe matched from function call to function de�nition by either their location with respect to thecontinuation parameter or by an optional label. For example, in Figure 6 parameter m in the callmatches to x in the de�nition, because they are in the same location relative to the continuationparameter. In the example shown, the small circle inside the continuation parameter ring indicatesthat the function returns a value. By performing the substitutions called for by the arrows in the�gure, we can see that the variable result is passed through to n in the function call.Figure 7 shows an example of de�ning a simple geometric point class in VIPR along withthe equivalent C++ class de�nition. The entire class is surrounded by a dotted ring. Private�elds or methods are surrounded by double boxes and are not visible in an instance of a classuntil execution enters a method of the class. Method de�nitions follow the scheme of functionde�nitions discussed above. Figure 8, Figure 9 and Figure 10 show a small example program whichmakes use of the point class. Note that variables which have been declared to be pointers to aparticular class but have not yet been initialized point to shaded instances of the class. Theseare referred to as pseudo-instances [Citrin et al. 1994]. The instances become unshaded after thevariables are initialized. The only other important aspect of the example to note is the appearanceof the self variable in the state upon entry into the \xDistance" method. Clearly, in a program14



Figure 7: De�nition of a point class in VIPR and the equivalent C++ class15



Figure 8: Example program using point class16



Figure 9: Example program using point class (Cont.) a. at Statement 2 b. inside xDistance17



Figure 10: Example program using point class (Cont.) at Statement 4with a fairly large number of classes and subroutines, the display could become rather crowded.In order to improve program visualization for large-scale projects, Citrin et. al have begun workon a variety of new display methods for the VIPR environment, including zooming and �sheyeing[Citrin et al. 1996].The VIPR group has also developed a visual representation for the lambda calculus whichthey refer to as VEX for Visual EXpressions. VEX is intended to become an expression-orientedcomponent of VIPR [Citrin et al. 1995]. We will only take a brief look at its major features. Fig-ure 11 shows the textual and visual representations for the Y combinator. As in VIPR, parametersare represented by small circles inside and tangent to main rings, so f and x are parameters in theexample. Function application is represented by adjacent closed �gures, and arrows point fromthe applied functions to their argument. In VEX, free and bound identi�ers are easily recognized.Each identi�er is connected by an undirected edge to a labeled root node. Free identi�ers areconnected to roots which are not inside and tangent to any rings, while bound identi�ers are con-nected to internally tangent roots. Thus, in Figure 12 identi�er 2 is free in the overall expressionwhile identi�er 5 is bound inside the expression represented by ring 3. Graphical equivalents havebeen devised for �-conversion, �-reduction, and �-reduction, but a detailed discussion of these isbeyond the scope of this paper.6.3 PrographIn this section we describe the Prograph language which is considered to be the most (commer-cially) successful of the general-purpose visual languages [Cox & Pietryzkowsky 1990].The research on Prograph originated in 1982 at the Technical University of Nova Scotia. Sincethen, several versions of the language have been released, with the most recent (Prograph/CPX)being commercialized by Pictorius, Inc.Prograph is a visual object-oriented language. It combines the familiar notions of classesand objects with a powerful visual dataow speci�cation mechanism. Prograph is an imperative18



Figure 11: Y combinator ((Y e) = (�x:e(xx))(�x:e(xx)) = e((�x:e(xx))(�x:e(xx))) = e(Y e))expressed textually in VEX 19



Figure 12: VEX syntaxlanguage, providing explicit control over evaluation order. Of particular interest are Prograph'scases and multiplexes, the special control structures which are intended to replace explicit iterationand provide sophisticated ow control. We will discuss these as part of an example below.Prograph allows the programmer to work on both high and low levels, allowing him or her todesign and maintainmore or less complicated software. Primitive computations such as arithmeticoperators, method calls, etc. are combined to form method bodies by dataow diagrams. Themethods are then organized into classes, which are, in turn, organized into class hierarchies. Inaddition, Prograph provides the programmer with so-called persistent objects that can be storedin a Prograph database between di�erent invocations of the program.We will now introduce some of the more interesting Prograph features by means of an exampleof topological sort algorithm on directed graphs. Graphs will be represented by adjacency lists,i.e. a graph is a list of lists, each of which corresponds to a node. A list representing a nodeconsists of the name of the node, followed by names of all nodes at the heads of outer edges ofthis node.Figure 13 depicts a Prograph program to perform topological sort. The \Methods" windowcontains the names of all functions in this program, with \CALL" being the top-level routine 1.Methods consist of one or mores cases. Each case of a method is a dataow diagram thatspeci�es how the case is to be executed. Each dataow primitive designates an operation to beperformed on data which enters through one or more terminals (at the top of the operation icon).The output of an operation is produced at one or more roots (at the bottom of the operation icon).The edges of a ow diagram indicate how data propagates from the root of one operation to theterminals of the next, i.e. the order of execution is data-driven.Method \CALL" (also shown on Figure 13) consists of two cases. The case number, as wellas the total number of cases, is indicated in the title bar of the window containing the method'sdataow diagram. It contains calls to two system methods \ask" and \show" (underlined methodnames designate system methods) and a call to a user-de�ned method \sort" whose de�nition is1All functions in Prograph are referred to as \methods", even those that are not member functions { so-calleduniversal methods. 20



Figure 13: Prograph example { A topological sort algorithmpresented on Figure 14.The execution of \CALL" begins by evaluating the result of calling method \ask" and theconstant \()" { the empty list. \ask" obtains input from the user which becomes the value ofits root. After the evaluation of \ask" and the constant is competed, their results are passed to\sort" which is the next operation to be executed. Note that the call to \sort" is accompaniedby a control called next-on-failure represented by an icon to the left of the operation icon. Thisindicates that if call to \sort" fails (which implies that the graph contains a cycle; see below forthe explanation on how this failure condition is generated), execution of case 1 of \CALL" shouldhalt and case 2 should be executed.In case 1 of \CALL", the operation sort is a multiplex (which is pictorially distinguished asimple operation by being drawn in a three-dimensional fashion to emphasize the fact that a it isexecuted many times). At least one of the roots or the terminals of the multiplex is annotatedwith an icon that indicates the type of the multiplex. The multiplex in Figure 13, is called aniterative multiplex (a di�erent kind of multiplex is presented when we discuss the method \sort").The annotations on this multiplex indicate that output values on the loop roots will be passed tothe loop terminals as input values for the next iteration. The execution of the loop continues untila special control called terminate-on-success is not executed inside method \sort".Method \sort" (Figure 14) contains two controls that terminate the execution of the method.The �rst such control (comparing \sort" input to \()"), called terminate-on-success, indicates tothe callee of \sort" that multiplex is to be terminated with \success" status. The second control(comparing output of partition operation to \()"), called terminate-and-fail-on-success, indicatesto the callee that the multiplex is to be terminated with \fail" status. As discussed above, thishas the e�ect of failing the execution of the callee and passing control to its next case (case 2 of21



Figure 14: Prograph example { Method \sort" for topological sort algorithm\CALL" in our example).Of particular interest is a di�erent kind of multiplex contained in the method \sort", called aparallel multiplex. These include calls to \partition" and \remove". This multiplex means that anoperation should be applied to each element of an input list (similar to \map" in Lisp) in parallel.Execution of any operation, including method call, can result in any of the following outcomes:execution succeeds, execution fails, execution results in an error. The di�erentiation of \failures"from \errors" distinguishes Prograph from other case-based languages (such as Prolog) by provid-ing a �ner control mechanism. In the case of an error, execution of the program is halted. In othercases, execution continues, according to a control primitive attached to the operation in the bodyof the callee. This control primitive, marked either by a check or by a cross to indicate whether isit executed on success or on failure respectively, always halts execution of current case and divertsthread of control in one of the following ways:� Start execution of the next case.� Indicate failure of the method within which it is contained.� End execution of calling multiplex.� Indicate failure in the execution of calling multiplex.While this brief example is insu�cient to illustrate all the features of Prograph, such as itsobject-oriented model and its interactive programming environment, it demonstrates the essentialsof the language. As we conclude our discussion of Prograph, we should mention that the foremostachievement of this language is its ability to free the programmer from tedious chores with theunnecessary level of detail provided by conventional languages, which, in part, is responsible forthe language's commercial success. 22



Figure 15: Forms/3: Sample Form6.4 Forms/3Forms/3 [Burnett 1994] is another general-purpose object-oriented visual programming languagewhose features emphasize data abstraction. However, unlike Prograph (Section 6.3) and VIPR(Section 6.2), no inheritance or explicit message-passing is supported.Forms/3 borrows the spreadsheet metaphor of cells and formulas to represent data and com-putation respectively. A particular features of Forms/3 is that cells may be organized into a groupcalled form, a basic data abstraction mechanism. A form may be given pictorial representation(an icon) and it may be instantiated into an object. In a sense, a form corresponds to a prototypeobject in prototype-based object oriented languages.In Forms/3 data (values) and computation (formulas) are tightly coupled. Every object residesin a cell and is de�ned declaratively using a formula. Objects can only be created via formulasand each formula produces an object as a result of its evaluation. Formulas provide a facility torequest results from other objects and create new objects: there's no explicit message passing.The programmer creates a new Forms/3 program by creating a new form, adding cells to it,and specifying the formulas. A sample form is depicted in Figure 15. The formulas for this formwere speci�ed by �rst selecting cell \X", typing \5", selecting cell \Y", clicking on \X" and typing\+ 1". The programmer could have also referred to cell \X" by typing its name, rather thanselecting it on the screen.Forms/3 implements a declarative approach to ow control combined with the time dimensionin an approach that the authors call \vectors in time". With this approach, each vector de�nes asequence of objects that represent the value of that cell at di�erent points in time. Returning tothe sample form in Figure 15, if X de�nes a time vector of numeric objects such as <1 2 3 4 5>,then Y de�nes a time vector <2 3 4 5>. Forms/3 provides the programmer with explicit access tothe time dimension, and so iteration can be implemented very elegantly even with this declarativeapproach. Consider an example of Figure 16, a form designed to compute nth Fibonacci number.Here, \earlier" is one of the time-based operations in Forms/3.Just as in other general-purpose visual programming languages, Forms/3 allows the program-mer to work on both low and high levels. Low-level programming in Forms/3 is performed viaformulas, while higher-level abstraction is realized by collecting cells into forms.In conclusion of our discussion of Forms/3 it is worth mentioning that unlike some visual23



Figure 16: Forms/3 { computing Fibonacci numbers. (a) A form and a formula for one of thecells, and (b) a conceptual sketch of workspace in time24



programming language, Forms/3 does not aim to eliminate text completely: the presence of text informulas is a feature of the language. The objective of the language is to use visual techniques suchas direct manipulation and continuous visual feedback to enhance the process of programming.6.5 CubeCube, by M. Najork, represents an important advance in the design of visual programming lan-guages in that it is the �rst three dimensional VPL. Since Cube programs are translated intosimpler internal representations for type checking and interpreting, the language would fall intothe category of a hybrid according to our taxonomy. However, the user is never exposed to anytextual representation, so the argument could be made that Cube comes very close to being acompletely visual language. The language uses a dataow metaphor for program construction.Working in 3D provides a number of important bene�ts over more traditional 2D VPLs. Forexample, working in three dimensions allows the system to display more information in an envi-ronment which is easier to interact with than a 2D representation which uses the same screen size[Najork & Kaplan 1991]. In the 3D display, the programmer is free to move his or her viewpointanywhere inside the virtual world in order to look at any particular section of a program from anyviewpoint. This sort of exibility is not available in most 2D VPLs.Figure 17 shows the main components of a Cube program as they appear in a recursive functionto compute the factorial of a given number [Najork 1995]. Cube programs are composed primarilyof holder cubes, predicate cubes, de�nition cubes, ports, pipes, and planes. The entire structure inFigure 17 is surrounded by a de�nition cube which associates the icon \!" with the function de�nedwithin the cube. The de�nition cube has two ports connected to it, one on the left and on theright. The left-hand port serves as the input while the right-hand port provides output, althoughports in Cube are bi-directional, so technically either port can serve either function. Both portsare connected through pipes to holder cubes in the bottom plane of the diagram which representsthe base case of the recursion. Note that each plane represents a dataow diagram. In the caseof the bottom plane, the diagram simply supplies default values for the ports and indicates whattype of values each port can accept or produce. If the value at the input port is 0, then the bottomplane is active and the value from the right-hand holder cube, i.e. one, ows to the output port.If the input is greater than zero, the greater than predicate in the top plane is satis�ed, and one issubtracted from the input by the bottom branch of the upper dataow diagram. This di�erenceis fed into the recursive call to the factorial function, and the result is multiplied by the originalinput. The product then ows to the output port. After de�ning the factorial function within aprogram, the programmer can then call it by simply connecting a predicate cube labeled by the\!" icon to holder cubes at the two ports.7 ConclusionThe �eld of visual programming languages abounds with examples of unique e�orts to widen theaccessibility and enhance the power of computer programming. Although the various projectsdiscussed above vary in a number of details, particularly the visual metaphor employed and thetargeted application domain, they all share the common goal of improving the programming pro-cess. In addition, recent research into solidifying the theoretical foundations of visual programmingand serious e�orts to develop standardized formal classi�cations for VPLs indicate that the �eldhas begun to reassess itself and mature. Even as the area has grown over the past twenty years,important historical contributions from work such as Sketchpad and Pygmalion have maintainedtheir inuence on various VPL designs. 25



Figure 17: Function to compute the factorial of a number in Cube26



Despite the move toward graphical displays and interactions embodied by VPLs, a survey ofthe �eld quickly shows that it is not worthwhile to eschew text entirely. While many VPLs couldrepresent all aspects of a program visually, such programs are generally harder to read and workwith than those that use text for labels and some atomic operations. For example, although anoperation like addition can be represented graphically in VIPR, doing so results in a rather dense,cluttered display. On the other hand, using text to represent such an atomic operation producesa less complicated display without losing the overall visual metaphor.As computer graphics hardware and processors continue to improve in performance and dropin price, three dimensional VPLs like Cube should begin to garner more attention from the re-search community. 3D VPLs not only address the problem of �tting large amounts of informationon a rather small screen, but they also exemplify the inherent synergy between programming lan-guages, computer graphics, and human-computer interfaces which has been a hallmark of visualprogramming from its inception.

27



References[Borning 1981] Borning, A. H. The programming language aspects of thinglab, a constraintoriented simulation laboratory. ACM Trans. Programming Languages and Systems,3(4):353{387, October 1981.[Brown & Sedgewick 1984] Brown, M. and Sedgewick, R. A system for algorithm animation. InProc. of SIGGRAPH '84, pp. 177{186, 1984.[Burnett & Ambler 1992] Burnett, M. M. and Ambler, A. L. A declarative approach to event-handling in visual programming languages. In Proc. 1993 IEEE Symposium VisualLanguages, pp. 34{40, Seattle, Washington, September 1992.[Burnett & Baker 1994] Burnett, M. M. and Baker, M. J. A classi�cation system for visual pro-gramming languages. J. Visual Languages and Computing, pp. 287{300, September1994.[Burnett 1994] Burnett, M. M. Seven programming language issues. In Burnett, M. M., Goldberg,A., and Lewis, T. G., editors, Visual Object-Oriented Programming. Prentice Hall andManning, Greenwich, CT, 1994.[Chang 1987] Chang, S. Visual languages: A tutorial and survey. IEEE Software, 4(1):29{39,January 1987.[Chang 1990] Chang, S.-K., editor. Principles of Visual Programming Systems. Prentice Hall,New York, 1990.[Citrin et al. 1994] Citrin, W., Doherty, M., and Zorn, B. Design of a completely visual object-oriented programming language. In Burnett, M., Goldberg, A., and Lewis, T., editors,Visual Object-Oriented Programming. Prentice-Hall, New York, 1994. Not publishedyet.[Citrin et al. 1995] Citrin, W., Hall, R., and Zorn, B. Programming with visual expressions. InProc. 1995 IEEE Symposium Visual Languages, pp. 294{301, 1995.[Citrin et al. 1996] Citrin, W., Hall, R., and Zorn, B. Addressing the scalability problem in visualprogramming. In Proc. of CHI '96, 1996.[Cox & Pietryzkowsky 1990] Cox, P. T. and Pietryzkowsky, T. Using a pictorial representationto combine dataow and object-orientation in a language-independent programmingmechanism. In Glinert, E. P., editor, Visual Programming Environments: Paradigmsand Systems. IEEE Computer Society Press, Los Alamitos, CA, 1990.[Erwig & Meyer 1995] Erwig, M. and Meyer, B. Heterogeneous visual languages : Integratingvisual and textual programming. In Proc. 1995 IEEE Symposium Visual Languages,pp. 318{325, 1995.[Finzer & Gould 1984] Finzer, W. and Gould, L. Programming by Rehearsal. BYTE, 9(6):187{210, June 1984.[Golin 1990] Golin, E. J. A method for the speci�cation and parsing of visual languages. PhDdissertation, Brown University, 1990.28



[Lakin 1986] Lakin, F. Spatial parsing for visual languages. In Chang, S.-K., Ichikawa, T., andLigomenides, P., editors, Visual Languages, pp. 35{85. Plenum Press, New York, 1986.[Najork & Kaplan 1991] Najork, M. and Kaplan, S. The cube language. In Proc. 1991 IEEEWorkshop Visual Languages, pp. 218{224, Kobe, Japan, 1991.[Najork 1995] Najork, M. Visual programming in 3-d. Dr. Dobb's Journal, 20(12):18{31, Decem-ber 1995.[Rekers & Sch�urr 1995] Rekers, J. and Sch�urr, A. A graph grammar approach to graphical parsing.In Proc. 1995 IEEE Symposium Visual Languages, Darmstadt, Germany, 1995.[Rhor 1986] Rhor, G. Using visual concepts. In Chang, S.-K., Ichikawa, T., and Ligomenides, P.,editors, Visual Languages. Plenum Press, New York, 1986.[Shu 1986] Shu, N. C. Visual Programming Languages: A Perspective and a Dimensional Analysis,pp. 11{34. Plenum Press, 1986.[Smith 1975] Smith, D. C. PYGMALION: A Creative Programming Environment. PhD disserta-tion, Stanford University, 1975.[Smith 1986] Smith, R. The alternate reality kit : An animated environment for creating in-teractive simulations. In Proc. 1986 IEEE Workshop Visual Languages, pp. 99{106,1986.[Smith 1987] Smith, R. B. Experiences with the alternate reality kit: An example of the tensionbetween literalism and magic. IEEE CG & A, 7(9):42{50, September 1987.[Sutherland 1963] Sutherland, I. B. SKETCHPAD, a man-machine graphical communication sys-tem. In Proceedings of the Spring Joint Computer Conference, pp. 329{346, 1963.[Tortora 1990] Tortora, G. Structure and interpretation of visual languages. In Chang, S.-K.,editor, Visual Languages and Visual Programming, pp. 3{30. Plenum Press, New York,1990.
29


