feat: start op amp notes
This commit is contained in:
parent
a2922fd7da
commit
73529a5d6d
@ -64,11 +64,31 @@ w 96 224 192 224 2
|
||||
g 96 352 96 432 0 0
|
||||
b 144 288 289 401 0
|
||||
x 264 386 278 389 4 24 β
|
||||
x 240 345 252 348 4 12 Rf
|
||||
x 160 363 176 366 4 12 Rg
|
||||
```
|
||||
|
||||
What is the closed loop gain of this circuit?
|
||||
|
||||
$$
|
||||
\begin{flalign}
|
||||
&V_- = V_+ = V_s&\\\
|
||||
&V_- \text{is the output of a voltage divider}\\
|
||||
\end{flalign}
|
||||
$$
|
||||
|
||||
Because $V_-$ is equal to $V_+$ and
|
||||
|
||||
$V_- = V_s = V_o (\frac{R_g}{R_G+R_F})$
|
||||
t
|
||||
If we solve that equation for $\frac{V_O}{V_s}$ we get the following formula:
|
||||
|
||||
$\displaystyle Gain =\frac{V_o}{V_s} = 1+\frac{R_F}{R_G}$
|
||||
|
||||
# Buffer (Voltage-Follow)
|
||||
|
||||
This circuit is usefull, because the output always replicates the voltage at the input. For example if you connect the output of a voltage divider you can drive a load wth $V_o$ and the impedance in the Load will not change the $V_o$
|
||||
|
||||
```circuitjs
|
||||
$ 64 0.000005 1.0312258501325766 50 5 50 5e-11
|
||||
a 192 240 304 240 9 15 -15 1000000 4.999950000499995 5 100000
|
||||
@ -79,4 +99,55 @@ v 96 304 96 224 0 0 40 5 0 0 0.5
|
||||
w 96 224 192 224 2
|
||||
g 96 304 96 352 0 0
|
||||
w 192 320 304 320 0
|
||||
```
|
||||
```
|
||||
|
||||
# Inverting Amplifier
|
||||
|
||||
```circuitjs
|
||||
$ 64 0.000005 1.0312258501325766 50 5 50 5e-11
|
||||
v 48 304 48 192 0 0 40 5 0 0 0.5
|
||||
r 176 192 96 192 0 1000
|
||||
w 176 224 176 304 0
|
||||
g 176 304 176 352 0 0
|
||||
g 48 304 48 352 0 0
|
||||
r 176 112 336 112 0 1000
|
||||
w 336 112 336 208 0
|
||||
w 176 192 176 112 0
|
||||
w 336 208 416 208 0
|
||||
g 416 320 416 352 0 0
|
||||
p 416 208 416 320 1 0 0
|
||||
x 249 86 261 89 4 12 Rf
|
||||
x 129 166 141 169 4 12 Ri
|
||||
a 176 208 336 208 8 15 -15 1000000 0.00004999900001999959 0 100000
|
||||
w 96 192 48 192 2
|
||||
```
|
||||
|
||||
$$
|
||||
\begin{flalign}
|
||||
&\frac{V_o}{V_S} = -\frac{R_F}{R_I}&\\\
|
||||
\end{flalign}
|
||||
$$
|
||||
# Difference Amplifier
|
||||
|
||||
```circuitjs
|
||||
$ 64 0.000005 1.0312258501325766 50 5 50 5e-11
|
||||
R 144 192 96 192 0 0 40 5 0 0 0.5
|
||||
R 144 224 96 224 0 0 40 4 0 0 0.5
|
||||
r 144 192 224 192 0 1000
|
||||
r 144 224 224 224 0 1000
|
||||
a 224 208 352 208 8 15 -15 1000000 2.000009999800004 2 100000
|
||||
r 224 128 352 128 0 1000
|
||||
w 352 128 352 208 0
|
||||
w 224 192 224 128 0
|
||||
w 352 208 400 208 0
|
||||
p 400 208 400 320 1 0 0
|
||||
g 400 320 400 352 0 0
|
||||
r 224 224 224 320 0 1000
|
||||
g 224 320 224 352 0 0
|
||||
x 176 171 192 174 4 12 R1
|
||||
x 176 244 192 247 4 12 R1
|
||||
x 199 279 215 282 4 12 R2
|
||||
x 279 148 295 151 4 12 R2
|
||||
```
|
||||
|
||||
$\displaystyle V_O = \frac{R2}{R1}(V_2-V_1)$
|
@ -149,4 +149,5 @@ $Z = \sqrt{R^2 + (X_L - X_C)^2}$
|
||||
$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$
|
||||
|
||||
|
||||
# Non-Inverting Amplifier Gain
|
||||
# Non-Inverting Amplifier Gain
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user