Snapshot
This commit is contained in:
parent
6b15aece4d
commit
6d71b10a3f
@ -10,78 +10,77 @@ not yet rated
|
||||
## Recipes
|
||||
<!-- #query page where name =~ /^Media\/recipes/ render [[templates/recipe]] -->
|
||||
### [[Media/recipes/French-Bread-Pizza|French-Bread-Pizza]]
|
||||
not yet rated
|
||||
4/5 Stars
|
||||
|
||||
### [[Media/recipes/Lemony-Arugula-Spaghetti-Cacio-Pepe|Lemony-Arugula-Spaghetti-Cacio-Pepe]]
|
||||
not yet rated
|
||||
_not yet rated_
|
||||
|
||||
### [[Media/recipes/Broccoli-Blanched-with-Sesame-Oil|Broccoli-Blanched-with-Sesame-Oil]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
|
||||
### [[Media/recipes/Koreanisches-Rindfleisch|Koreanisches-Rindfleisch]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
|
||||
### [[Media/recipes/Mie-Nudeln-Erdnusssoße|Mie-Nudeln-Erdnusssoße]]
|
||||
not yet rated
|
||||
_not yet rated_
|
||||
|
||||
### [[Media/recipes/Auberginen-Feta-Reispfanne|Auberginen-Feta-Reispfanne]]
|
||||
4 Stars
|
||||
4/5 Stars
|
||||
|
||||
### [[Media/recipes/One-Skillet-Chicken-Alfredoy|One-Skillet-Chicken-Alfredoy]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
|
||||
### [[Media/recipes/Molten-Chocolate-Chunk-Brownies|Molten-Chocolate-Chunk-Brownies]]
|
||||
4 Stars
|
||||
4/5 Stars
|
||||
|
||||
### [[Media/recipes/Hähnchen-Curry|Hähnchen-Curry]]
|
||||
not yet rated
|
||||
_not yet rated_
|
||||
|
||||
### [[Media/recipes/Ham-Cheese-Breakfast-Pockets|Ham-Cheese-Breakfast-Pockets]]
|
||||
4 Stars
|
||||
4/5 Stars
|
||||
|
||||
### [[Media/recipes/Miso-Suppe|Miso-Suppe]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
|
||||
### [[Media/recipes/Cast-Iron-Peach-Crisp|Cast-Iron-Peach-Crisp]]
|
||||
3 Stars
|
||||
3/5 Stars
|
||||
|
||||
### [[Media/recipes/Roto-chick-Chicken-Noodle-Soup|Roto-chick-Chicken-Noodle-Soup]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
|
||||
### [[Media/recipes/Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch|Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
|
||||
### [[Media/recipes/Broccoli-Bolognese-with-Orecchiette|Broccoli-Bolognese-with-Orecchiette]]
|
||||
4 Stars
|
||||
4/5 Stars
|
||||
|
||||
### [[Media/recipes/Großmutter-Käsekuchen|Großmutter-Käsekuchen]]
|
||||
not yet rated
|
||||
_not yet rated_
|
||||
|
||||
### [[Media/recipes/Indian-Butter-Chicken|Indian-Butter-Chicken]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
|
||||
### [[Media/recipes/Swedish-Meatballs|Swedish-Meatballs]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
|
||||
### [[Media/recipes/Linsenpfanne-mit-Staudensellerie|Linsenpfanne-mit-Staudensellerie]]
|
||||
4 Stars
|
||||
4/5 Stars
|
||||
|
||||
### [[Media/recipes/Mochi|Mochi]]
|
||||
4 Stars
|
||||
4/5 Stars
|
||||
|
||||
### [[Media/recipes/Spinach-Ohitashi|Spinach-Ohitashi]]
|
||||
not yet rated
|
||||
_not yet rated_
|
||||
|
||||
### [[Media/recipes/Egg-Fried-Rice|Egg-Fried-Rice]]
|
||||
5 Stars
|
||||
|
||||
<img src=Media/recipes/images/egg-fried-rice.jpg width=”50%”/>
|
||||
5/5 Stars
|
||||
![](Media/recipes/images/egg-fried-rice.jpg)
|
||||
### [[Media/recipes/Slow-Cooker-Beef-Stew|Slow-Cooker-Beef-Stew]]
|
||||
not yet rated
|
||||
_not yet rated_
|
||||
|
||||
### [[Media/recipes/Cucumber-Basil-Egg-Salad|Cucumber-Basil-Egg-Salad]]
|
||||
not yet rated
|
||||
_not yet rated_
|
||||
|
||||
### [[Media/recipes/Banana-Bread|Banana-Bread]]
|
||||
5 Stars
|
||||
5/5 Stars
|
||||
<!-- /query -->
|
||||
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
link: https://www.epicurious.com/recipes/food/views/french-bread-pizzas-with-mozzarella-and-pepperoni-56390008
|
||||
tating: ★★★★
|
||||
rating: 4
|
||||
time: 30 minutes
|
||||
yield: 4
|
||||
---
|
||||
|
@ -5,4 +5,5 @@ tags:
|
||||
- "#pub"
|
||||
prefixes:
|
||||
- Media
|
||||
- Resources
|
||||
```
|
||||
|
@ -8,8 +8,203 @@ Because high pass filters work exactly like low pass filters but in reverse, let
|
||||
|
||||
Lets first calculate the cutoff frequency of this filter:
|
||||
|
||||
![[formulas#Cutoff Frequency for RC Filters]]
|
||||
[[Resources/electricity/formulas|Formulas]]
|
||||
|
||||
<!-- #include [[Resources/electricity/formulas]] -->
|
||||
---
|
||||
cards-deck: electricity
|
||||
---
|
||||
|
||||
$\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001}$
|
||||
$\displaystyle f_{c} = 159154.94 \approx 159.1kHz$
|
||||
## Ohms Law
|
||||
|
||||
*Solve for voltage:*
|
||||
#card
|
||||
|
||||
$\displaystyle V = I*R$
|
||||
^1654598090369
|
||||
|
||||
*Solve for resistance:*
|
||||
#card
|
||||
|
||||
$\displaystyle R = \frac{V}{I}$
|
||||
^1654598090389
|
||||
|
||||
*Solve for current*
|
||||
#card
|
||||
|
||||
$\displaystyle I = \frac{V}{R}$
|
||||
^1654598090398
|
||||
|
||||
## Resistors in Series
|
||||
#card
|
||||
|
||||
$R = R1 + R2 + R3 ...$
|
||||
^1654598090404
|
||||
|
||||
## Resistors in Parallel
|
||||
#card
|
||||
|
||||
$$
|
||||
\begin{flalign}
|
||||
&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\
|
||||
\\
|
||||
&\textit{For two resistors in parallel:} &\\
|
||||
\\
|
||||
&R = \frac{R1 * R2}{R1 + R2} &\\\
|
||||
\end{flalign}
|
||||
$$
|
||||
***Tip:***
|
||||
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
|
||||
## Voltage Divider
|
||||
#card
|
||||
^1654598090410
|
||||
|
||||
$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$
|
||||
|
||||
## Thevenin’s Theorem
|
||||
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
|
||||
|
||||
## Conservation of Charge (First Law)
|
||||
#card
|
||||
|
||||
All current entering a node must also leave that node
|
||||
$$
|
||||
\begin{flalign}
|
||||
\sum{I_{IN}} = \sum{I_{OUT}}&&
|
||||
\end{flalign}
|
||||
$$
|
||||
**Example:**
|
||||
^1654598090415
|
||||
|
||||
![](kirchhoffs-law-01.svg)
|
||||
|
||||
For this circuit kirchhoffs law states that:
|
||||
|
||||
$\displaystyle i1 = i2 + i3 + i4$
|
||||
|
||||
## Conservation of Energy (Second Law)
|
||||
All the potential differences around the loop must sum to zero.
|
||||
|
||||
$\displaystyle \sum{V} = 0$
|
||||
|
||||
## Capacitors in Series
|
||||
#card
|
||||
|
||||
$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$
|
||||
^1654598090421
|
||||
|
||||
## Impedance in a Circuit
|
||||
#card
|
||||
$$
|
||||
\begin{flalign}
|
||||
&Z = \sqrt{R^2 + X^2} &\\\
|
||||
\\
|
||||
&X = X_{L} - X_{C} \\
|
||||
\end{flalign}
|
||||
$$
|
||||
## Capacitive Reactance
|
||||
#card
|
||||
^1654598090426
|
||||
|
||||
$\displaystyle X_{c} = \frac{1}{2 \pi fC}$
|
||||
|
||||
## Inductive Reactance
|
||||
#card
|
||||
|
||||
$\displaystyle X_{l} = 2\pi fL$
|
||||
^1654598090432
|
||||
|
||||
## Analog Filters
|
||||
|
||||
## Cutoff Frequency for RC Filters
|
||||
#card
|
||||
|
||||
$\displaystyle f_{c} = \frac{1}{2\pi RC}$
|
||||
^1654598090437
|
||||
|
||||
## Cutoff Frequency for RL Filters
|
||||
#card
|
||||
|
||||
$\displaystyle f_{c} = \frac{R}{2\pi L}$
|
||||
^1654598090445
|
||||
|
||||
## Cutoff Frequency for multiple Low Pass Filters
|
||||
$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$
|
||||
|
||||
Where $n$ = Number if **identical** filters
|
||||
|
||||
## Resonance Frequency for RLC Low Pass Filter
|
||||
#card
|
||||
|
||||
$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$
|
||||
^1654598090452
|
||||
|
||||
## Center Frequency with Fc and Fh
|
||||
#card
|
||||
|
||||
$f_{c} = \sqrt{f_{h}*f_{l}}$
|
||||
^1654598090459
|
||||
|
||||
## Filter Response for RC Filters
|
||||
#card
|
||||
|
||||
$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$
|
||||
^1654598090466
|
||||
|
||||
## Cutoff Frequency $\pi$ Topology Filter
|
||||
#card
|
||||
|
||||
When the two capacitors have the same capacitance, it can be calculated like this:
|
||||
^1654598090479
|
||||
|
||||
$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$
|
||||
|
||||
## Angular Frequency ($\omega$)
|
||||
#card
|
||||
|
||||
$\omega = 2\pi f = \frac{2\pi}{T}$
|
||||
^1654598090492
|
||||
|
||||
## RLC Series Response
|
||||
|
||||
This is basically Ohms Law:
|
||||
|
||||
$\displaystyle V = IZ$
|
||||
|
||||
Where $Z$ is the impedance:
|
||||
|
||||
$Z = \sqrt{R^2 + (X_L - X_C)^2}$
|
||||
|
||||
$X_L$ = Reactive Inductance
|
||||
$X_C$ = Reactive Capacativw
|
||||
|
||||
## Current through a transistor
|
||||
|
||||
$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$
|
||||
|
||||
## Gain Bandwidth Product
|
||||
#card
|
||||
|
||||
$GBP = A_V * f_c$
|
||||
^1654598090498
|
||||
|
||||
$\displaystyle f_c = \frac{GBP}{A_V}$
|
||||
|
||||
## Bandwidth of Multiple OpAmps
|
||||
|
||||
Where $n$ = number of stages
|
||||
and $BW$ = Bandwidth of single op-amp
|
||||
|
||||
$BW_E = BW\sqrt{2^\frac{1}{n}-1}$
|
||||
|
||||
## Power lost in a Resistor
|
||||
#card
|
||||
|
||||
$P = IV = I^2R = \frac{V^2}{R}$
|
||||
^1654598090504
|
||||
<!-- /include -->
|
||||
|
||||
```latex
|
||||
\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001}
|
||||
\displaystyle f_{c} = 159154.94 \approx 159.1kHz
|
||||
```
|
@ -1,191 +1,183 @@
|
||||
---
|
||||
cards-deck: electricity
|
||||
---
|
||||
|
||||
## Ohms Law
|
||||
|
||||
*Solve for voltage:*
|
||||
#card
|
||||
|
||||
$\displaystyle V = I*R$
|
||||
^1654598090369
|
||||
```latex
|
||||
\displaystyle V = I*R
|
||||
```
|
||||
|
||||
*Solve for resistance:*
|
||||
#card
|
||||
|
||||
$\displaystyle R = \frac{V}{I}$
|
||||
^1654598090389
|
||||
```latex
|
||||
\displaystyle R = \frac{V}{I}
|
||||
```
|
||||
|
||||
*Solve for current*
|
||||
#card
|
||||
|
||||
$\displaystyle I = \frac{V}{R}$
|
||||
^1654598090398
|
||||
```latex
|
||||
\displaystyle I = \frac{V}{R}
|
||||
```
|
||||
|
||||
## Resistors in Series
|
||||
#card
|
||||
|
||||
$R = R1 + R2 + R3 ...$
|
||||
^1654598090404
|
||||
```latex
|
||||
R = R1 + R2 + R3 ...
|
||||
```
|
||||
|
||||
## Resistors in Parallel
|
||||
#card
|
||||
|
||||
$$
|
||||
\begin{flalign}
|
||||
&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\
|
||||
\\
|
||||
&\textit{For two resistors in parallel:} &\\
|
||||
\\
|
||||
&R = \frac{R1 * R2}{R1 + R2} &\\\
|
||||
\end{flalign}
|
||||
$$
|
||||
```latex
|
||||
\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... \\
|
||||
\textit{}\\
|
||||
\textit{For two resistors in parallel:}\\
|
||||
\textit{}\\
|
||||
R = \frac{R1 * R2}{R1 + R2}
|
||||
```
|
||||
|
||||
***Tip:***
|
||||
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
|
||||
## Voltage Divider
|
||||
#card
|
||||
^1654598090410
|
||||
|
||||
$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$
|
||||
## Voltage Divider
|
||||
|
||||
```latex
|
||||
V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})
|
||||
```
|
||||
|
||||
## Thevenin’s Theorem
|
||||
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
|
||||
|
||||
## Conservation of Charge (First Law)
|
||||
#card
|
||||
|
||||
All current entering a node must also leave that node
|
||||
$$
|
||||
\begin{flalign}
|
||||
\sum{I_{IN}} = \sum{I_{OUT}}&&
|
||||
\end{flalign}
|
||||
$$
|
||||
**Example:**
|
||||
^1654598090415
|
||||
|
||||
![](kirchhoffs-law-01.svg)
|
||||
```latex
|
||||
\sum{I_{IN}} = \sum{I_{OUT}}
|
||||
```
|
||||
**Example:**
|
||||
![](Resources/electricity/assets/kirchhoffs-law-1.svg)
|
||||
|
||||
For this circuit kirchhoffs law states that:
|
||||
|
||||
$\displaystyle i1 = i2 + i3 + i4$
|
||||
```latex
|
||||
\displaystyle i1 = i2 + i3 + i4
|
||||
```
|
||||
|
||||
## Conservation of Energy (Second Law)
|
||||
All the potential differences around the loop must sum to zero.
|
||||
|
||||
$\displaystyle \sum{V} = 0$
|
||||
```latex
|
||||
\displaystyle \sum{V} = 0
|
||||
```
|
||||
|
||||
## Capacitors in Series
|
||||
#card
|
||||
|
||||
$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$
|
||||
^1654598090421
|
||||
```latex
|
||||
\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...
|
||||
```
|
||||
|
||||
## Impedance in a Circuit
|
||||
#card
|
||||
$$
|
||||
\begin{flalign}
|
||||
&Z = \sqrt{R^2 + X^2} &\\\
|
||||
\\
|
||||
&X = X_{L} - X_{C} \\
|
||||
\end{flalign}
|
||||
$$
|
||||
## Capacitive Reactance
|
||||
#card
|
||||
^1654598090426
|
||||
```latex
|
||||
Z = \sqrt{R^2 + X^2} \\
|
||||
\textit{}\\
|
||||
X = X_{L} - X_{C} \\
|
||||
```
|
||||
|
||||
$\displaystyle X_{c} = \frac{1}{2 \pi fC}$
|
||||
## Capacitive Reactance
|
||||
|
||||
```latex
|
||||
\displaystyle X_{c} = \frac{1}{2 \pi fC}
|
||||
```
|
||||
|
||||
## Inductive Reactance
|
||||
#card
|
||||
|
||||
$\displaystyle X_{l} = 2\pi fL$
|
||||
^1654598090432
|
||||
```latex
|
||||
\displaystyle X_{l} = 2\pi fL
|
||||
```
|
||||
|
||||
## Analog Filters
|
||||
|
||||
## Cutoff Frequency for RC Filters
|
||||
#card
|
||||
|
||||
$\displaystyle f_{c} = \frac{1}{2\pi RC}$
|
||||
^1654598090437
|
||||
```latex
|
||||
\displaystyle f_{c} = \frac{1}{2\pi RC}
|
||||
```
|
||||
|
||||
## Cutoff Frequency for RL Filters
|
||||
#card
|
||||
|
||||
$\displaystyle f_{c} = \frac{R}{2\pi L}$
|
||||
^1654598090445
|
||||
```latex
|
||||
\displaystyle f_{c} = \frac{R}{2\pi L}
|
||||
```
|
||||
|
||||
## Cutoff Frequency for multiple Low Pass Filters
|
||||
$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$
|
||||
```latex
|
||||
\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}
|
||||
```
|
||||
|
||||
Where $n$ = Number if **identical** filters
|
||||
|
||||
## Resonance Frequency for RLC Low Pass Filter
|
||||
#card
|
||||
|
||||
$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$
|
||||
^1654598090452
|
||||
```latex
|
||||
\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}
|
||||
```
|
||||
|
||||
## Center Frequency with Fc and Fh
|
||||
#card
|
||||
|
||||
$f_{c} = \sqrt{f_{h}*f_{l}}$
|
||||
^1654598090459
|
||||
```latex
|
||||
f_{c} = \sqrt{f_{h}*f_{l}}
|
||||
```
|
||||
|
||||
## Filter Response for RC Filters
|
||||
#card
|
||||
|
||||
$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$
|
||||
^1654598090466
|
||||
```latex
|
||||
V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})
|
||||
```
|
||||
|
||||
## Cutoff Frequency $\pi$ Topology Filter
|
||||
#card
|
||||
|
||||
When the two capacitors have the same capacitance, it can be calculated like this:
|
||||
^1654598090479
|
||||
|
||||
$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$
|
||||
|
||||
```latex
|
||||
\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}
|
||||
```
|
||||
## Angular Frequency ($\omega$)
|
||||
#card
|
||||
|
||||
$\omega = 2\pi f = \frac{2\pi}{T}$
|
||||
^1654598090492
|
||||
```latex
|
||||
\omega = 2\pi f = \frac{2\pi}{T}
|
||||
```
|
||||
|
||||
## RLC Series Response
|
||||
|
||||
This is basically Ohms Law:
|
||||
|
||||
$\displaystyle V = IZ$
|
||||
```latex
|
||||
\displaystyle V = IZ
|
||||
```
|
||||
|
||||
Where $Z$ is the impedance:
|
||||
|
||||
$Z = \sqrt{R^2 + (X_L - X_C)^2}$
|
||||
```latex
|
||||
Z = \sqrt{R^2 + (X_L - X_C)^2}
|
||||
```
|
||||
|
||||
$X_L$ = Reactive Inductance
|
||||
$X_C$ = Reactive Capacativw
|
||||
|
||||
## Current through a transistor
|
||||
|
||||
$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$
|
||||
```latex
|
||||
\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}
|
||||
```
|
||||
|
||||
## Gain Bandwidth Product
|
||||
#card
|
||||
```latex
|
||||
GBP = A_V * f_c
|
||||
```
|
||||
|
||||
$GBP = A_V * f_c$
|
||||
^1654598090498
|
||||
|
||||
$\displaystyle f_c = \frac{GBP}{A_V}$
|
||||
```latex
|
||||
\displaystyle f_c = \frac{GBP}{A_V}
|
||||
```
|
||||
|
||||
## Bandwidth of Multiple OpAmps
|
||||
|
||||
Where $n$ = number of stages
|
||||
and $BW$ = Bandwidth of single op-amp
|
||||
|
||||
$BW_E = BW\sqrt{2^\frac{1}{n}-1}$
|
||||
```latex
|
||||
BW_E = BW\sqrt{2^\frac{1}{n}-1}
|
||||
```
|
||||
|
||||
## Power lost in a Resistor
|
||||
#card
|
||||
|
||||
$P = IV = I^2R = \frac{V^2}{R}$
|
||||
^1654598090504
|
||||
```latex
|
||||
P = IV = I^2R = \frac{V^2}{R}
|
||||
```
|
||||
|
@ -97,5 +97,5 @@ It contains some ressources
|
||||
[[Resources/games/web-based|Resources/games/web-based]]
|
||||
[[Resources/games/rpg|Resources/games/rpg]]
|
||||
[[Resources/mechanics/gaggia-baby-millenium|Resources/mechanics/gaggia-baby-millenium]]
|
||||
[[Resources|Resources]]
|
||||
[[Resources/index|Resources/index]]
|
||||
<!-- /query -->
|
@ -1,7 +1,7 @@
|
||||
# Proof of x² = 2x
|
||||
|
||||
|
||||
$$
|
||||
```latex
|
||||
\begin{flalign}
|
||||
& \frac{d}{dx}(x^2) = 2 &\\\
|
||||
\\
|
||||
@ -20,7 +20,7 @@ $$
|
||||
&f'(x) = \lim_{x \to 0} 2x+h \\
|
||||
|
||||
\end{flalign}
|
||||
$$
|
||||
```
|
||||
|
||||
|
||||
```desmos-graph
|
||||
|
@ -1,10 +1,8 @@
|
||||
### [[{{name}}|{{substring name 100 14 ““}}]]
|
||||
{{#if rating}}
|
||||
{{rating}} Stars
|
||||
{{rating}}/5 Stars
|
||||
{{else}}
|
||||
not yet rated
|
||||
_not yet rated_
|
||||
{{/if}}
|
||||
|
||||
{{#if image}}
|
||||
<img src={{image}} width=”50%”/>
|
||||
{{/if}}
|
||||
![]({{image}}){{/if}}
|
Loading…
Reference in New Issue
Block a user