This commit is contained in:
notes 2023-04-20 12:25:26 +00:00
parent 6b15aece4d
commit 6d71b10a3f
8 changed files with 330 additions and 145 deletions

View File

@ -10,78 +10,77 @@ not yet rated
## Recipes ## Recipes
<!-- #query page where name =~ /^Media\/recipes/ render [[templates/recipe]] --> <!-- #query page where name =~ /^Media\/recipes/ render [[templates/recipe]] -->
### [[Media/recipes/French-Bread-Pizza|French-Bread-Pizza]] ### [[Media/recipes/French-Bread-Pizza|French-Bread-Pizza]]
not yet rated 4/5 Stars
### [[Media/recipes/Lemony-Arugula-Spaghetti-Cacio-Pepe|Lemony-Arugula-Spaghetti-Cacio-Pepe]] ### [[Media/recipes/Lemony-Arugula-Spaghetti-Cacio-Pepe|Lemony-Arugula-Spaghetti-Cacio-Pepe]]
not yet rated _not yet rated_
### [[Media/recipes/Broccoli-Blanched-with-Sesame-Oil|Broccoli-Blanched-with-Sesame-Oil]] ### [[Media/recipes/Broccoli-Blanched-with-Sesame-Oil|Broccoli-Blanched-with-Sesame-Oil]]
5 Stars 5/5 Stars
### [[Media/recipes/Koreanisches-Rindfleisch|Koreanisches-Rindfleisch]] ### [[Media/recipes/Koreanisches-Rindfleisch|Koreanisches-Rindfleisch]]
5 Stars 5/5 Stars
### [[Media/recipes/Mie-Nudeln-Erdnusssoße|Mie-Nudeln-Erdnusssoße]] ### [[Media/recipes/Mie-Nudeln-Erdnusssoße|Mie-Nudeln-Erdnusssoße]]
not yet rated _not yet rated_
### [[Media/recipes/Auberginen-Feta-Reispfanne|Auberginen-Feta-Reispfanne]] ### [[Media/recipes/Auberginen-Feta-Reispfanne|Auberginen-Feta-Reispfanne]]
4 Stars 4/5 Stars
### [[Media/recipes/One-Skillet-Chicken-Alfredoy|One-Skillet-Chicken-Alfredoy]] ### [[Media/recipes/One-Skillet-Chicken-Alfredoy|One-Skillet-Chicken-Alfredoy]]
5 Stars 5/5 Stars
### [[Media/recipes/Molten-Chocolate-Chunk-Brownies|Molten-Chocolate-Chunk-Brownies]] ### [[Media/recipes/Molten-Chocolate-Chunk-Brownies|Molten-Chocolate-Chunk-Brownies]]
4 Stars 4/5 Stars
### [[Media/recipes/Hähnchen-Curry|Hähnchen-Curry]] ### [[Media/recipes/Hähnchen-Curry|Hähnchen-Curry]]
not yet rated _not yet rated_
### [[Media/recipes/Ham-Cheese-Breakfast-Pockets|Ham-Cheese-Breakfast-Pockets]] ### [[Media/recipes/Ham-Cheese-Breakfast-Pockets|Ham-Cheese-Breakfast-Pockets]]
4 Stars 4/5 Stars
### [[Media/recipes/Miso-Suppe|Miso-Suppe]] ### [[Media/recipes/Miso-Suppe|Miso-Suppe]]
5 Stars 5/5 Stars
### [[Media/recipes/Cast-Iron-Peach-Crisp|Cast-Iron-Peach-Crisp]] ### [[Media/recipes/Cast-Iron-Peach-Crisp|Cast-Iron-Peach-Crisp]]
3 Stars 3/5 Stars
### [[Media/recipes/Roto-chick-Chicken-Noodle-Soup|Roto-chick-Chicken-Noodle-Soup]] ### [[Media/recipes/Roto-chick-Chicken-Noodle-Soup|Roto-chick-Chicken-Noodle-Soup]]
5 Stars 5/5 Stars
### [[Media/recipes/Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch|Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch]] ### [[Media/recipes/Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch|Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch]]
5 Stars 5/5 Stars
### [[Media/recipes/Broccoli-Bolognese-with-Orecchiette|Broccoli-Bolognese-with-Orecchiette]] ### [[Media/recipes/Broccoli-Bolognese-with-Orecchiette|Broccoli-Bolognese-with-Orecchiette]]
4 Stars 4/5 Stars
### [[Media/recipes/Großmutter-Käsekuchen|Großmutter-Käsekuchen]] ### [[Media/recipes/Großmutter-Käsekuchen|Großmutter-Käsekuchen]]
not yet rated _not yet rated_
### [[Media/recipes/Indian-Butter-Chicken|Indian-Butter-Chicken]] ### [[Media/recipes/Indian-Butter-Chicken|Indian-Butter-Chicken]]
5 Stars 5/5 Stars
### [[Media/recipes/Swedish-Meatballs|Swedish-Meatballs]] ### [[Media/recipes/Swedish-Meatballs|Swedish-Meatballs]]
5 Stars 5/5 Stars
### [[Media/recipes/Linsenpfanne-mit-Staudensellerie|Linsenpfanne-mit-Staudensellerie]] ### [[Media/recipes/Linsenpfanne-mit-Staudensellerie|Linsenpfanne-mit-Staudensellerie]]
4 Stars 4/5 Stars
### [[Media/recipes/Mochi|Mochi]] ### [[Media/recipes/Mochi|Mochi]]
4 Stars 4/5 Stars
### [[Media/recipes/Spinach-Ohitashi|Spinach-Ohitashi]] ### [[Media/recipes/Spinach-Ohitashi|Spinach-Ohitashi]]
not yet rated _not yet rated_
### [[Media/recipes/Egg-Fried-Rice|Egg-Fried-Rice]] ### [[Media/recipes/Egg-Fried-Rice|Egg-Fried-Rice]]
5 Stars 5/5 Stars
![](Media/recipes/images/egg-fried-rice.jpg)
<img src=Media/recipes/images/egg-fried-rice.jpg width=”50%”/>
### [[Media/recipes/Slow-Cooker-Beef-Stew|Slow-Cooker-Beef-Stew]] ### [[Media/recipes/Slow-Cooker-Beef-Stew|Slow-Cooker-Beef-Stew]]
not yet rated _not yet rated_
### [[Media/recipes/Cucumber-Basil-Egg-Salad|Cucumber-Basil-Egg-Salad]] ### [[Media/recipes/Cucumber-Basil-Egg-Salad|Cucumber-Basil-Egg-Salad]]
not yet rated _not yet rated_
### [[Media/recipes/Banana-Bread|Banana-Bread]] ### [[Media/recipes/Banana-Bread|Banana-Bread]]
5 Stars 5/5 Stars
<!-- /query --> <!-- /query -->

View File

@ -1,6 +1,6 @@
--- ---
link: https://www.epicurious.com/recipes/food/views/french-bread-pizzas-with-mozzarella-and-pepperoni-56390008 link: https://www.epicurious.com/recipes/food/views/french-bread-pizzas-with-mozzarella-and-pepperoni-56390008
tating: ★★★★ rating: 4
time: 30 minutes time: 30 minutes
yield: 4 yield: 4
--- ---

View File

@ -5,4 +5,5 @@ tags:
- "#pub" - "#pub"
prefixes: prefixes:
- Media - Media
- Resources
``` ```

View File

@ -8,8 +8,203 @@ Because high pass filters work exactly like low pass filters but in reverse, let
Lets first calculate the cutoff frequency of this filter: Lets first calculate the cutoff frequency of this filter:
![[formulas#Cutoff Frequency for RC Filters]] [[Resources/electricity/formulas|Formulas]]
<!-- #include [[Resources/electricity/formulas]] -->
---
cards-deck: electricity
---
$\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001}$ ## Ohms Law
$\displaystyle f_{c} = 159154.94 \approx 159.1kHz$
*Solve for voltage:*
#card
$\displaystyle V = I*R$
^1654598090369
*Solve for resistance:*
#card
$\displaystyle R = \frac{V}{I}$
^1654598090389
*Solve for current*
#card
$\displaystyle I = \frac{V}{R}$
^1654598090398
## Resistors in Series
#card
$R = R1 + R2 + R3 ...$
^1654598090404
## Resistors in Parallel
#card
$$
\begin{flalign}
&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\
\\
&\textit{For two resistors in parallel:} &\\
\\
&R = \frac{R1 * R2}{R1 + R2} &\\\
\end{flalign}
$$
***Tip:***
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
## Voltage Divider
#card
^1654598090410
$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$
## Thevenins Theorem
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
## Conservation of Charge (First Law)
#card
All current entering a node must also leave that node
$$
\begin{flalign}
\sum{I_{IN}} = \sum{I_{OUT}}&&
\end{flalign}
$$
**Example:**
^1654598090415
![](kirchhoffs-law-01.svg)
For this circuit kirchhoffs law states that:
$\displaystyle i1 = i2 + i3 + i4$
## Conservation of Energy (Second Law)
All the potential differences around the loop must sum to zero.
$\displaystyle \sum{V} = 0$
## Capacitors in Series
#card
$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$
^1654598090421
## Impedance in a Circuit
#card
$$
\begin{flalign}
&Z = \sqrt{R^2 + X^2} &\\\
\\
&X = X_{L} - X_{C} \\
\end{flalign}
$$
## Capacitive Reactance
#card
^1654598090426
$\displaystyle X_{c} = \frac{1}{2 \pi fC}$
## Inductive Reactance
#card
$\displaystyle X_{l} = 2\pi fL$
^1654598090432
## Analog Filters
## Cutoff Frequency for RC Filters
#card
$\displaystyle f_{c} = \frac{1}{2\pi RC}$
^1654598090437
## Cutoff Frequency for RL Filters
#card
$\displaystyle f_{c} = \frac{R}{2\pi L}$
^1654598090445
## Cutoff Frequency for multiple Low Pass Filters
$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$
Where $n$ = Number if **identical** filters
## Resonance Frequency for RLC Low Pass Filter
#card
$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$
^1654598090452
## Center Frequency with Fc and Fh
#card
$f_{c} = \sqrt{f_{h}*f_{l}}$
^1654598090459
## Filter Response for RC Filters
#card
$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$
^1654598090466
## Cutoff Frequency $\pi$ Topology Filter
#card
When the two capacitors have the same capacitance, it can be calculated like this:
^1654598090479
$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$
## Angular Frequency ($\omega$)
#card
$\omega = 2\pi f = \frac{2\pi}{T}$
^1654598090492
## RLC Series Response
This is basically Ohms Law:
$\displaystyle V = IZ$
Where $Z$ is the impedance:
$Z = \sqrt{R^2 + (X_L - X_C)^2}$
$X_L$ = Reactive Inductance
$X_C$ = Reactive Capacativw
## Current through a transistor
$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$
## Gain Bandwidth Product
#card
$GBP = A_V * f_c$
^1654598090498
$\displaystyle f_c = \frac{GBP}{A_V}$
## Bandwidth of Multiple OpAmps
Where $n$ = number of stages
and $BW$ = Bandwidth of single op-amp
$BW_E = BW\sqrt{2^\frac{1}{n}-1}$
## Power lost in a Resistor
#card
$P = IV = I^2R = \frac{V^2}{R}$
^1654598090504
<!-- /include -->
```latex
\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001}
\displaystyle f_{c} = 159154.94 \approx 159.1kHz
```

View File

@ -1,191 +1,183 @@
---
cards-deck: electricity
---
## Ohms Law ## Ohms Law
*Solve for voltage:* *Solve for voltage:*
#card
$\displaystyle V = I*R$ ```latex
^1654598090369 \displaystyle V = I*R
```
*Solve for resistance:* *Solve for resistance:*
#card
$\displaystyle R = \frac{V}{I}$ ```latex
^1654598090389 \displaystyle R = \frac{V}{I}
```
*Solve for current* *Solve for current*
#card ```latex
\displaystyle I = \frac{V}{R}
$\displaystyle I = \frac{V}{R}$ ```
^1654598090398
## Resistors in Series ## Resistors in Series
#card
$R = R1 + R2 + R3 ...$ ```latex
^1654598090404 R = R1 + R2 + R3 ...
```
## Resistors in Parallel ## Resistors in Parallel
#card
$$ ```latex
\begin{flalign} \frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... \\
&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\ \textit{}\\
\\ \textit{For two resistors in parallel:}\\
&\textit{For two resistors in parallel:} &\\ \textit{}\\
\\ R = \frac{R1 * R2}{R1 + R2}
&R = \frac{R1 * R2}{R1 + R2} &\\\ ```
\end{flalign}
$$
***Tip:*** ***Tip:***
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors. If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
## Voltage Divider
#card
^1654598090410
$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$ ## Voltage Divider
```latex
V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})
```
## Thevenins Theorem ## Thevenins Theorem
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load. States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
## Conservation of Charge (First Law) ## Conservation of Charge (First Law)
#card
All current entering a node must also leave that node All current entering a node must also leave that node
$$
\begin{flalign}
\sum{I_{IN}} = \sum{I_{OUT}}&&
\end{flalign}
$$
**Example:**
^1654598090415
![](kirchhoffs-law-01.svg) ```latex
\sum{I_{IN}} = \sum{I_{OUT}}
```
**Example:**
![](Resources/electricity/assets/kirchhoffs-law-1.svg)
For this circuit kirchhoffs law states that: For this circuit kirchhoffs law states that:
$\displaystyle i1 = i2 + i3 + i4$ ```latex
\displaystyle i1 = i2 + i3 + i4
```
## Conservation of Energy (Second Law) ## Conservation of Energy (Second Law)
All the potential differences around the loop must sum to zero. All the potential differences around the loop must sum to zero.
$\displaystyle \sum{V} = 0$ ```latex
\displaystyle \sum{V} = 0
```
## Capacitors in Series ## Capacitors in Series
#card
$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$ ```latex
^1654598090421 \displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...
```
## Impedance in a Circuit ## Impedance in a Circuit
#card ```latex
$$ Z = \sqrt{R^2 + X^2} \\
\begin{flalign} \textit{}\\
&Z = \sqrt{R^2 + X^2} &\\\ X = X_{L} - X_{C} \\
\\ ```
&X = X_{L} - X_{C} \\
\end{flalign}
$$
## Capacitive Reactance
#card
^1654598090426
$\displaystyle X_{c} = \frac{1}{2 \pi fC}$ ## Capacitive Reactance
```latex
\displaystyle X_{c} = \frac{1}{2 \pi fC}
```
## Inductive Reactance ## Inductive Reactance
#card ```latex
\displaystyle X_{l} = 2\pi fL
$\displaystyle X_{l} = 2\pi fL$ ```
^1654598090432
## Analog Filters ## Analog Filters
## Cutoff Frequency for RC Filters ## Cutoff Frequency for RC Filters
#card ```latex
\displaystyle f_{c} = \frac{1}{2\pi RC}
$\displaystyle f_{c} = \frac{1}{2\pi RC}$ ```
^1654598090437
## Cutoff Frequency for RL Filters ## Cutoff Frequency for RL Filters
#card ```latex
\displaystyle f_{c} = \frac{R}{2\pi L}
$\displaystyle f_{c} = \frac{R}{2\pi L}$ ```
^1654598090445
## Cutoff Frequency for multiple Low Pass Filters ## Cutoff Frequency for multiple Low Pass Filters
$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$ ```latex
\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}
```
Where $n$ = Number if **identical** filters Where $n$ = Number if **identical** filters
## Resonance Frequency for RLC Low Pass Filter ## Resonance Frequency for RLC Low Pass Filter
#card ```latex
\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}
$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$ ```
^1654598090452
## Center Frequency with Fc and Fh ## Center Frequency with Fc and Fh
#card ```latex
f_{c} = \sqrt{f_{h}*f_{l}}
$f_{c} = \sqrt{f_{h}*f_{l}}$ ```
^1654598090459
## Filter Response for RC Filters ## Filter Response for RC Filters
#card ```latex
V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})
$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$ ```
^1654598090466
## Cutoff Frequency $\pi$ Topology Filter ## Cutoff Frequency $\pi$ Topology Filter
#card
When the two capacitors have the same capacitance, it can be calculated like this: When the two capacitors have the same capacitance, it can be calculated like this:
^1654598090479 ```latex
\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}
$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$ ```
## Angular Frequency ($\omega$) ## Angular Frequency ($\omega$)
#card ```latex
\omega = 2\pi f = \frac{2\pi}{T}
$\omega = 2\pi f = \frac{2\pi}{T}$ ```
^1654598090492
## RLC Series Response ## RLC Series Response
This is basically Ohms Law: This is basically Ohms Law:
$\displaystyle V = IZ$ ```latex
\displaystyle V = IZ
```
Where $Z$ is the impedance: Where $Z$ is the impedance:
$Z = \sqrt{R^2 + (X_L - X_C)^2}$ ```latex
Z = \sqrt{R^2 + (X_L - X_C)^2}
```
$X_L$ = Reactive Inductance $X_L$ = Reactive Inductance
$X_C$ = Reactive Capacativw $X_C$ = Reactive Capacativw
## Current through a transistor ## Current through a transistor
$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$ ```latex
\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}
```
## Gain Bandwidth Product ## Gain Bandwidth Product
#card ```latex
GBP = A_V * f_c
```
$GBP = A_V * f_c$ ```latex
^1654598090498 \displaystyle f_c = \frac{GBP}{A_V}
```
$\displaystyle f_c = \frac{GBP}{A_V}$
## Bandwidth of Multiple OpAmps ## Bandwidth of Multiple OpAmps
Where $n$ = number of stages Where $n$ = number of stages
and $BW$ = Bandwidth of single op-amp and $BW$ = Bandwidth of single op-amp
$BW_E = BW\sqrt{2^\frac{1}{n}-1}$ ```latex
BW_E = BW\sqrt{2^\frac{1}{n}-1}
```
## Power lost in a Resistor ## Power lost in a Resistor
#card ```latex
P = IV = I^2R = \frac{V^2}{R}
$P = IV = I^2R = \frac{V^2}{R}$ ```
^1654598090504

View File

@ -97,5 +97,5 @@ It contains some ressources
[[Resources/games/web-based|Resources/games/web-based]] [[Resources/games/web-based|Resources/games/web-based]]
[[Resources/games/rpg|Resources/games/rpg]] [[Resources/games/rpg|Resources/games/rpg]]
[[Resources/mechanics/gaggia-baby-millenium|Resources/mechanics/gaggia-baby-millenium]] [[Resources/mechanics/gaggia-baby-millenium|Resources/mechanics/gaggia-baby-millenium]]
[[Resources|Resources]] [[Resources/index|Resources/index]]
<!-- /query --> <!-- /query -->

View File

@ -1,7 +1,7 @@
# Proof of x² = 2x # Proof of x² = 2x
$$ ```latex
\begin{flalign} \begin{flalign}
& \frac{d}{dx}(x^2) = 2 &\\\ & \frac{d}{dx}(x^2) = 2 &\\\
\\ \\
@ -20,7 +20,7 @@ $$
&f'(x) = \lim_{x \to 0} 2x+h \\ &f'(x) = \lim_{x \to 0} 2x+h \\
\end{flalign} \end{flalign}
$$ ```
```desmos-graph ```desmos-graph

View File

@ -1,10 +1,8 @@
### [[{{name}}|{{substring name 100 14 ““}}]] ### [[{{name}}|{{substring name 100 14 ““}}]]
{{#if rating}} {{#if rating}}
{{rating}} Stars {{rating}}/5 Stars
{{else}} {{else}}
not yet rated _not yet rated_
{{/if}} {{/if}}
{{#if image}} {{#if image}}
<img src={{image}} width=”50%”/> ![]({{image}}){{/if}}
{{/if}}