diff --git a/Media/index.md b/Media/index.md
index 50d98c8..b0181c2 100644
--- a/Media/index.md
+++ b/Media/index.md
@@ -10,78 +10,77 @@ not yet rated
## Recipes
### [[Media/recipes/French-Bread-Pizza|French-Bread-Pizza]]
-not yet rated
+4/5 Stars
### [[Media/recipes/Lemony-Arugula-Spaghetti-Cacio-Pepe|Lemony-Arugula-Spaghetti-Cacio-Pepe]]
-not yet rated
+_not yet rated_
### [[Media/recipes/Broccoli-Blanched-with-Sesame-Oil|Broccoli-Blanched-with-Sesame-Oil]]
-5 Stars
+5/5 Stars
### [[Media/recipes/Koreanisches-Rindfleisch|Koreanisches-Rindfleisch]]
-5 Stars
+5/5 Stars
### [[Media/recipes/Mie-Nudeln-Erdnusssoße|Mie-Nudeln-Erdnusssoße]]
-not yet rated
+_not yet rated_
### [[Media/recipes/Auberginen-Feta-Reispfanne|Auberginen-Feta-Reispfanne]]
-4 Stars
+4/5 Stars
### [[Media/recipes/One-Skillet-Chicken-Alfredoy|One-Skillet-Chicken-Alfredoy]]
-5 Stars
+5/5 Stars
### [[Media/recipes/Molten-Chocolate-Chunk-Brownies|Molten-Chocolate-Chunk-Brownies]]
-4 Stars
+4/5 Stars
### [[Media/recipes/Hähnchen-Curry|Hähnchen-Curry]]
-not yet rated
+_not yet rated_
### [[Media/recipes/Ham-Cheese-Breakfast-Pockets|Ham-Cheese-Breakfast-Pockets]]
-4 Stars
+4/5 Stars
### [[Media/recipes/Miso-Suppe|Miso-Suppe]]
-5 Stars
+5/5 Stars
### [[Media/recipes/Cast-Iron-Peach-Crisp|Cast-Iron-Peach-Crisp]]
-3 Stars
+3/5 Stars
### [[Media/recipes/Roto-chick-Chicken-Noodle-Soup|Roto-chick-Chicken-Noodle-Soup]]
-5 Stars
+5/5 Stars
### [[Media/recipes/Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch|Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch]]
-5 Stars
+5/5 Stars
### [[Media/recipes/Broccoli-Bolognese-with-Orecchiette|Broccoli-Bolognese-with-Orecchiette]]
-4 Stars
+4/5 Stars
### [[Media/recipes/Großmutter-Käsekuchen|Großmutter-Käsekuchen]]
-not yet rated
+_not yet rated_
### [[Media/recipes/Indian-Butter-Chicken|Indian-Butter-Chicken]]
-5 Stars
+5/5 Stars
### [[Media/recipes/Swedish-Meatballs|Swedish-Meatballs]]
-5 Stars
+5/5 Stars
### [[Media/recipes/Linsenpfanne-mit-Staudensellerie|Linsenpfanne-mit-Staudensellerie]]
-4 Stars
+4/5 Stars
### [[Media/recipes/Mochi|Mochi]]
-4 Stars
+4/5 Stars
### [[Media/recipes/Spinach-Ohitashi|Spinach-Ohitashi]]
-not yet rated
+_not yet rated_
### [[Media/recipes/Egg-Fried-Rice|Egg-Fried-Rice]]
-5 Stars
-
-
+5/5 Stars
+![](Media/recipes/images/egg-fried-rice.jpg)
### [[Media/recipes/Slow-Cooker-Beef-Stew|Slow-Cooker-Beef-Stew]]
-not yet rated
+_not yet rated_
### [[Media/recipes/Cucumber-Basil-Egg-Salad|Cucumber-Basil-Egg-Salad]]
-not yet rated
+_not yet rated_
### [[Media/recipes/Banana-Bread|Banana-Bread]]
-5 Stars
+5/5 Stars
diff --git a/Media/recipes/French-Bread-Pizza.md b/Media/recipes/French-Bread-Pizza.md
index d94367a..c6fcc2e 100755
--- a/Media/recipes/French-Bread-Pizza.md
+++ b/Media/recipes/French-Bread-Pizza.md
@@ -1,6 +1,6 @@
---
link: https://www.epicurious.com/recipes/food/views/french-bread-pizzas-with-mozzarella-and-pepperoni-56390008
-tating: ★★★★
+rating: 4
time: 30 minutes
yield: 4
---
diff --git a/PUBLISH.md b/PUBLISH.md
index 8e900be..10ae198 100644
--- a/PUBLISH.md
+++ b/PUBLISH.md
@@ -5,4 +5,5 @@ tags:
- "#pub"
prefixes:
- Media
+- Resources
```
diff --git a/Resources/electricity/circuits/rc-high-pass.md b/Resources/electricity/circuits/rc-high-pass.md
index 6323b09..cebeeba 100644
--- a/Resources/electricity/circuits/rc-high-pass.md
+++ b/Resources/electricity/circuits/rc-high-pass.md
@@ -8,8 +8,203 @@ Because high pass filters work exactly like low pass filters but in reverse, let
Lets first calculate the cutoff frequency of this filter:
-![[formulas#Cutoff Frequency for RC Filters]]
+[[Resources/electricity/formulas|Formulas]]
+
+---
+cards-deck: electricity
+---
-$\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001}$
-$\displaystyle f_{c} = 159154.94 \approx 159.1kHz$
\ No newline at end of file
+## Ohms Law
+
+*Solve for voltage:*
+#card
+
+$\displaystyle V = I*R$
+^1654598090369
+
+*Solve for resistance:*
+#card
+
+$\displaystyle R = \frac{V}{I}$
+^1654598090389
+
+*Solve for current*
+#card
+
+$\displaystyle I = \frac{V}{R}$
+^1654598090398
+
+## Resistors in Series
+#card
+
+$R = R1 + R2 + R3 ...$
+^1654598090404
+
+## Resistors in Parallel
+#card
+
+$$
+\begin{flalign}
+&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\
+\\
+&\textit{For two resistors in parallel:} &\\
+\\
+&R = \frac{R1 * R2}{R1 + R2} &\\\
+\end{flalign}
+$$
+***Tip:***
+If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
+## Voltage Divider
+#card
+^1654598090410
+
+$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$
+
+## Thevenin’s Theorem
+States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
+
+## Conservation of Charge (First Law)
+#card
+
+All current entering a node must also leave that node
+$$
+\begin{flalign}
+\sum{I_{IN}} = \sum{I_{OUT}}&&
+\end{flalign}
+$$
+**Example:**
+^1654598090415
+
+![](kirchhoffs-law-01.svg)
+
+For this circuit kirchhoffs law states that:
+
+$\displaystyle i1 = i2 + i3 + i4$
+
+## Conservation of Energy (Second Law)
+All the potential differences around the loop must sum to zero.
+
+$\displaystyle \sum{V} = 0$
+
+## Capacitors in Series
+#card
+
+$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$
+^1654598090421
+
+## Impedance in a Circuit
+#card
+$$
+\begin{flalign}
+&Z = \sqrt{R^2 + X^2} &\\\
+\\
+&X = X_{L} - X_{C} \\
+\end{flalign}
+$$
+## Capacitive Reactance
+#card
+^1654598090426
+
+$\displaystyle X_{c} = \frac{1}{2 \pi fC}$
+
+## Inductive Reactance
+#card
+
+$\displaystyle X_{l} = 2\pi fL$
+^1654598090432
+
+## Analog Filters
+
+## Cutoff Frequency for RC Filters
+#card
+
+$\displaystyle f_{c} = \frac{1}{2\pi RC}$
+^1654598090437
+
+## Cutoff Frequency for RL Filters
+#card
+
+$\displaystyle f_{c} = \frac{R}{2\pi L}$
+^1654598090445
+
+## Cutoff Frequency for multiple Low Pass Filters
+$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$
+
+Where $n$ = Number if **identical** filters
+
+## Resonance Frequency for RLC Low Pass Filter
+#card
+
+$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$
+^1654598090452
+
+## Center Frequency with Fc and Fh
+#card
+
+$f_{c} = \sqrt{f_{h}*f_{l}}$
+^1654598090459
+
+## Filter Response for RC Filters
+#card
+
+$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$
+^1654598090466
+
+## Cutoff Frequency $\pi$ Topology Filter
+#card
+
+When the two capacitors have the same capacitance, it can be calculated like this:
+^1654598090479
+
+$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$
+
+## Angular Frequency ($\omega$)
+#card
+
+$\omega = 2\pi f = \frac{2\pi}{T}$
+^1654598090492
+
+## RLC Series Response
+
+This is basically Ohms Law:
+
+$\displaystyle V = IZ$
+
+Where $Z$ is the impedance:
+
+$Z = \sqrt{R^2 + (X_L - X_C)^2}$
+
+$X_L$ = Reactive Inductance
+$X_C$ = Reactive Capacativw
+
+## Current through a transistor
+
+$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$
+
+## Gain Bandwidth Product
+#card
+
+$GBP = A_V * f_c$
+^1654598090498
+
+$\displaystyle f_c = \frac{GBP}{A_V}$
+
+## Bandwidth of Multiple OpAmps
+
+Where $n$ = number of stages
+and $BW$ = Bandwidth of single op-amp
+
+$BW_E = BW\sqrt{2^\frac{1}{n}-1}$
+
+## Power lost in a Resistor
+#card
+
+$P = IV = I^2R = \frac{V^2}{R}$
+^1654598090504
+
+
+```latex
+\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001}
+\displaystyle f_{c} = 159154.94 \approx 159.1kHz
+```
\ No newline at end of file
diff --git a/Resources/electricity/formulas.md b/Resources/electricity/formulas.md
index bbd9303..adf23a7 100644
--- a/Resources/electricity/formulas.md
+++ b/Resources/electricity/formulas.md
@@ -1,191 +1,183 @@
----
-cards-deck: electricity
----
-
## Ohms Law
*Solve for voltage:*
-#card
-$\displaystyle V = I*R$
-^1654598090369
+```latex
+\displaystyle V = I*R
+```
*Solve for resistance:*
-#card
-$\displaystyle R = \frac{V}{I}$
-^1654598090389
+```latex
+\displaystyle R = \frac{V}{I}
+```
*Solve for current*
-#card
-
-$\displaystyle I = \frac{V}{R}$
-^1654598090398
+```latex
+\displaystyle I = \frac{V}{R}
+```
## Resistors in Series
-#card
-$R = R1 + R2 + R3 ...$
-^1654598090404
+```latex
+R = R1 + R2 + R3 ...
+```
## Resistors in Parallel
-#card
-$$
-\begin{flalign}
-&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\
-\\
-&\textit{For two resistors in parallel:} &\\
-\\
-&R = \frac{R1 * R2}{R1 + R2} &\\\
-\end{flalign}
-$$
+```latex
+\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... \\
+\textit{}\\
+\textit{For two resistors in parallel:}\\
+\textit{}\\
+R = \frac{R1 * R2}{R1 + R2}
+```
+
***Tip:***
If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors.
-## Voltage Divider
-#card
-^1654598090410
-$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$
+## Voltage Divider
+
+```latex
+V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})
+```
## Thevenin’s Theorem
States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load.
## Conservation of Charge (First Law)
-#card
All current entering a node must also leave that node
-$$
-\begin{flalign}
-\sum{I_{IN}} = \sum{I_{OUT}}&&
-\end{flalign}
-$$
-**Example:**
-^1654598090415
-![](kirchhoffs-law-01.svg)
+```latex
+\sum{I_{IN}} = \sum{I_{OUT}}
+```
+**Example:**
+![](Resources/electricity/assets/kirchhoffs-law-1.svg)
For this circuit kirchhoffs law states that:
-$\displaystyle i1 = i2 + i3 + i4$
+```latex
+\displaystyle i1 = i2 + i3 + i4
+```
## Conservation of Energy (Second Law)
All the potential differences around the loop must sum to zero.
-$\displaystyle \sum{V} = 0$
+```latex
+\displaystyle \sum{V} = 0
+```
## Capacitors in Series
-#card
-$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$
-^1654598090421
+```latex
+\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...
+```
## Impedance in a Circuit
-#card
-$$
-\begin{flalign}
-&Z = \sqrt{R^2 + X^2} &\\\
-\\
-&X = X_{L} - X_{C} \\
-\end{flalign}
-$$
-## Capacitive Reactance
-#card
-^1654598090426
+```latex
+Z = \sqrt{R^2 + X^2} \\
+\textit{}\\
+X = X_{L} - X_{C} \\
+```
-$\displaystyle X_{c} = \frac{1}{2 \pi fC}$
+## Capacitive Reactance
+
+```latex
+\displaystyle X_{c} = \frac{1}{2 \pi fC}
+```
## Inductive Reactance
-#card
-
-$\displaystyle X_{l} = 2\pi fL$
-^1654598090432
+```latex
+\displaystyle X_{l} = 2\pi fL
+```
## Analog Filters
## Cutoff Frequency for RC Filters
-#card
-
-$\displaystyle f_{c} = \frac{1}{2\pi RC}$
-^1654598090437
+```latex
+\displaystyle f_{c} = \frac{1}{2\pi RC}
+```
## Cutoff Frequency for RL Filters
-#card
-
-$\displaystyle f_{c} = \frac{R}{2\pi L}$
-^1654598090445
+```latex
+\displaystyle f_{c} = \frac{R}{2\pi L}
+```
## Cutoff Frequency for multiple Low Pass Filters
-$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$
+```latex
+\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}
+```
Where $n$ = Number if **identical** filters
## Resonance Frequency for RLC Low Pass Filter
-#card
-
-$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$
-^1654598090452
+```latex
+\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}
+```
## Center Frequency with Fc and Fh
-#card
-
-$f_{c} = \sqrt{f_{h}*f_{l}}$
-^1654598090459
+```latex
+f_{c} = \sqrt{f_{h}*f_{l}}
+```
## Filter Response for RC Filters
-#card
-
-$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$
-^1654598090466
+```latex
+V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})
+```
## Cutoff Frequency $\pi$ Topology Filter
-#card
-
When the two capacitors have the same capacitance, it can be calculated like this:
-^1654598090479
-
-$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$
-
+```latex
+\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}
+```
## Angular Frequency ($\omega$)
-#card
-
-$\omega = 2\pi f = \frac{2\pi}{T}$
-^1654598090492
+```latex
+\omega = 2\pi f = \frac{2\pi}{T}
+```
## RLC Series Response
This is basically Ohms Law:
-$\displaystyle V = IZ$
+```latex
+\displaystyle V = IZ
+```
Where $Z$ is the impedance:
-$Z = \sqrt{R^2 + (X_L - X_C)^2}$
+```latex
+Z = \sqrt{R^2 + (X_L - X_C)^2}
+```
$X_L$ = Reactive Inductance
$X_C$ = Reactive Capacativw
## Current through a transistor
-
-$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$
+
+```latex
+\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}
+```
## Gain Bandwidth Product
-#card
+```latex
+GBP = A_V * f_c
+```
-$GBP = A_V * f_c$
-^1654598090498
-
-$\displaystyle f_c = \frac{GBP}{A_V}$
+```latex
+\displaystyle f_c = \frac{GBP}{A_V}
+```
## Bandwidth of Multiple OpAmps
Where $n$ = number of stages
and $BW$ = Bandwidth of single op-amp
-$BW_E = BW\sqrt{2^\frac{1}{n}-1}$
+```latex
+BW_E = BW\sqrt{2^\frac{1}{n}-1}
+```
## Power lost in a Resistor
-#card
-
-$P = IV = I^2R = \frac{V^2}{R}$
-^1654598090504
+```latex
+P = IV = I^2R = \frac{V^2}{R}
+```
diff --git a/Resources.md b/Resources/index.md
similarity index 99%
rename from Resources.md
rename to Resources/index.md
index e0d1dc1..17d160e 100644
--- a/Resources.md
+++ b/Resources/index.md
@@ -97,5 +97,5 @@ It contains some ressources
[[Resources/games/web-based|Resources/games/web-based]]
[[Resources/games/rpg|Resources/games/rpg]]
[[Resources/mechanics/gaggia-baby-millenium|Resources/mechanics/gaggia-baby-millenium]]
-[[Resources|Resources]]
+[[Resources/index|Resources/index]]
diff --git a/Resources/mathematics/derivation/lim-proof.md b/Resources/mathematics/derivation/lim-proof.md
index 71bd452..cbba3e6 100644
--- a/Resources/mathematics/derivation/lim-proof.md
+++ b/Resources/mathematics/derivation/lim-proof.md
@@ -1,7 +1,7 @@
# Proof of x² = 2x
-$$
+```latex
\begin{flalign}
& \frac{d}{dx}(x^2) = 2 &\\\
\\
@@ -20,7 +20,7 @@ $$
&f'(x) = \lim_{x \to 0} 2x+h \\
\end{flalign}
-$$
+```
```desmos-graph
diff --git a/templates/recipe.md b/templates/recipe.md
index 4d9cf96..385c3af 100644
--- a/templates/recipe.md
+++ b/templates/recipe.md
@@ -1,10 +1,8 @@
### [[{{name}}|{{substring name 100 14 ““}}]]
{{#if rating}}
-{{rating}} Stars
+{{rating}}/5 Stars
{{else}}
-not yet rated
+_not yet rated_
{{/if}}
-
{{#if image}}
-
-{{/if}}
\ No newline at end of file
+![]({{image}}){{/if}}
\ No newline at end of file