diff --git a/Media/index.md b/Media/index.md index 50d98c8..b0181c2 100644 --- a/Media/index.md +++ b/Media/index.md @@ -10,78 +10,77 @@ not yet rated ## Recipes ### [[Media/recipes/French-Bread-Pizza|French-Bread-Pizza]] -not yet rated +4/5 Stars ### [[Media/recipes/Lemony-Arugula-Spaghetti-Cacio-Pepe|Lemony-Arugula-Spaghetti-Cacio-Pepe]] -not yet rated +_not yet rated_ ### [[Media/recipes/Broccoli-Blanched-with-Sesame-Oil|Broccoli-Blanched-with-Sesame-Oil]] -5 Stars +5/5 Stars ### [[Media/recipes/Koreanisches-Rindfleisch|Koreanisches-Rindfleisch]] -5 Stars +5/5 Stars ### [[Media/recipes/Mie-Nudeln-Erdnusssoße|Mie-Nudeln-Erdnusssoße]] -not yet rated +_not yet rated_ ### [[Media/recipes/Auberginen-Feta-Reispfanne|Auberginen-Feta-Reispfanne]] -4 Stars +4/5 Stars ### [[Media/recipes/One-Skillet-Chicken-Alfredoy|One-Skillet-Chicken-Alfredoy]] -5 Stars +5/5 Stars ### [[Media/recipes/Molten-Chocolate-Chunk-Brownies|Molten-Chocolate-Chunk-Brownies]] -4 Stars +4/5 Stars ### [[Media/recipes/Hähnchen-Curry|Hähnchen-Curry]] -not yet rated +_not yet rated_ ### [[Media/recipes/Ham-Cheese-Breakfast-Pockets|Ham-Cheese-Breakfast-Pockets]] -4 Stars +4/5 Stars ### [[Media/recipes/Miso-Suppe|Miso-Suppe]] -5 Stars +5/5 Stars ### [[Media/recipes/Cast-Iron-Peach-Crisp|Cast-Iron-Peach-Crisp]] -3 Stars +3/5 Stars ### [[Media/recipes/Roto-chick-Chicken-Noodle-Soup|Roto-chick-Chicken-Noodle-Soup]] -5 Stars +5/5 Stars ### [[Media/recipes/Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch|Süßscharfe-Kürbiscremesuppe-mit-Kokosmilch]] -5 Stars +5/5 Stars ### [[Media/recipes/Broccoli-Bolognese-with-Orecchiette|Broccoli-Bolognese-with-Orecchiette]] -4 Stars +4/5 Stars ### [[Media/recipes/Großmutter-Käsekuchen|Großmutter-Käsekuchen]] -not yet rated +_not yet rated_ ### [[Media/recipes/Indian-Butter-Chicken|Indian-Butter-Chicken]] -5 Stars +5/5 Stars ### [[Media/recipes/Swedish-Meatballs|Swedish-Meatballs]] -5 Stars +5/5 Stars ### [[Media/recipes/Linsenpfanne-mit-Staudensellerie|Linsenpfanne-mit-Staudensellerie]] -4 Stars +4/5 Stars ### [[Media/recipes/Mochi|Mochi]] -4 Stars +4/5 Stars ### [[Media/recipes/Spinach-Ohitashi|Spinach-Ohitashi]] -not yet rated +_not yet rated_ ### [[Media/recipes/Egg-Fried-Rice|Egg-Fried-Rice]] -5 Stars - - +5/5 Stars +![](Media/recipes/images/egg-fried-rice.jpg) ### [[Media/recipes/Slow-Cooker-Beef-Stew|Slow-Cooker-Beef-Stew]] -not yet rated +_not yet rated_ ### [[Media/recipes/Cucumber-Basil-Egg-Salad|Cucumber-Basil-Egg-Salad]] -not yet rated +_not yet rated_ ### [[Media/recipes/Banana-Bread|Banana-Bread]] -5 Stars +5/5 Stars diff --git a/Media/recipes/French-Bread-Pizza.md b/Media/recipes/French-Bread-Pizza.md index d94367a..c6fcc2e 100755 --- a/Media/recipes/French-Bread-Pizza.md +++ b/Media/recipes/French-Bread-Pizza.md @@ -1,6 +1,6 @@ --- link: https://www.epicurious.com/recipes/food/views/french-bread-pizzas-with-mozzarella-and-pepperoni-56390008 -tating: ★★★★ +rating: 4 time: 30 minutes yield: 4 --- diff --git a/PUBLISH.md b/PUBLISH.md index 8e900be..10ae198 100644 --- a/PUBLISH.md +++ b/PUBLISH.md @@ -5,4 +5,5 @@ tags: - "#pub" prefixes: - Media +- Resources ``` diff --git a/Resources/electricity/circuits/rc-high-pass.md b/Resources/electricity/circuits/rc-high-pass.md index 6323b09..cebeeba 100644 --- a/Resources/electricity/circuits/rc-high-pass.md +++ b/Resources/electricity/circuits/rc-high-pass.md @@ -8,8 +8,203 @@ Because high pass filters work exactly like low pass filters but in reverse, let Lets first calculate the cutoff frequency of this filter: -![[formulas#Cutoff Frequency for RC Filters]] +[[Resources/electricity/formulas|Formulas]] + +--- +cards-deck: electricity +--- -$\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001}$ -$\displaystyle f_{c} = 159154.94 \approx 159.1kHz$ \ No newline at end of file +## Ohms Law + +*Solve for voltage:* +#card + +$\displaystyle V = I*R$ +^1654598090369 + +*Solve for resistance:* +#card + +$\displaystyle R = \frac{V}{I}$ +^1654598090389 + +*Solve for current* +#card + +$\displaystyle I = \frac{V}{R}$ +^1654598090398 + +## Resistors in Series +#card + +$R = R1 + R2 + R3 ...$ +^1654598090404 + +## Resistors in Parallel +#card + +$$ +\begin{flalign} +&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\ +\\ +&\textit{For two resistors in parallel:} &\\ +\\ +&R = \frac{R1 * R2}{R1 + R2} &\\\ +\end{flalign} +$$ +***Tip:*** +If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors. +## Voltage Divider +#card +^1654598090410 + +$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$ + +## Thevenin’s Theorem +States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load. + +## Conservation of Charge (First Law) +#card + +All current entering a node must also leave that node +$$ +\begin{flalign} +\sum{I_{IN}} = \sum{I_{OUT}}&& +\end{flalign} +$$ +**Example:** +^1654598090415 + +![](kirchhoffs-law-01.svg) + +For this circuit kirchhoffs law states that: + +$\displaystyle i1 = i2 + i3 + i4$ + +## Conservation of Energy (Second Law) +All the potential differences around the loop must sum to zero. + +$\displaystyle \sum{V} = 0$ + +## Capacitors in Series +#card + +$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$ +^1654598090421 + +## Impedance in a Circuit +#card +$$ +\begin{flalign} +&Z = \sqrt{R^2 + X^2} &\\\ +\\ +&X = X_{L} - X_{C} \\ +\end{flalign} +$$ +## Capacitive Reactance +#card +^1654598090426 + +$\displaystyle X_{c} = \frac{1}{2 \pi fC}$ + +## Inductive Reactance +#card + +$\displaystyle X_{l} = 2\pi fL$ +^1654598090432 + +## Analog Filters + +## Cutoff Frequency for RC Filters +#card + +$\displaystyle f_{c} = \frac{1}{2\pi RC}$ +^1654598090437 + +## Cutoff Frequency for RL Filters +#card + +$\displaystyle f_{c} = \frac{R}{2\pi L}$ +^1654598090445 + +## Cutoff Frequency for multiple Low Pass Filters +$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$ + +Where $n$ = Number if **identical** filters + +## Resonance Frequency for RLC Low Pass Filter +#card + +$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$ +^1654598090452 + +## Center Frequency with Fc and Fh +#card + +$f_{c} = \sqrt{f_{h}*f_{l}}$ +^1654598090459 + +## Filter Response for RC Filters +#card + +$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$ +^1654598090466 + +## Cutoff Frequency $\pi$ Topology Filter +#card + +When the two capacitors have the same capacitance, it can be calculated like this: +^1654598090479 + +$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$ + +## Angular Frequency ($\omega$) +#card + +$\omega = 2\pi f = \frac{2\pi}{T}$ +^1654598090492 + +## RLC Series Response + +This is basically Ohms Law: + +$\displaystyle V = IZ$ + +Where $Z$ is the impedance: + +$Z = \sqrt{R^2 + (X_L - X_C)^2}$ + +$X_L$ = Reactive Inductance +$X_C$ = Reactive Capacativw + +## Current through a transistor + +$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$ + +## Gain Bandwidth Product +#card + +$GBP = A_V * f_c$ +^1654598090498 + +$\displaystyle f_c = \frac{GBP}{A_V}$ + +## Bandwidth of Multiple OpAmps + +Where $n$ = number of stages +and $BW$ = Bandwidth of single op-amp + +$BW_E = BW\sqrt{2^\frac{1}{n}-1}$ + +## Power lost in a Resistor +#card + +$P = IV = I^2R = \frac{V^2}{R}$ +^1654598090504 + + +```latex +\displaystyle f_{c} = \frac{1}{2\pi 100 * 0.00000001} +\displaystyle f_{c} = 159154.94 \approx 159.1kHz +``` \ No newline at end of file diff --git a/Resources/electricity/formulas.md b/Resources/electricity/formulas.md index bbd9303..adf23a7 100644 --- a/Resources/electricity/formulas.md +++ b/Resources/electricity/formulas.md @@ -1,191 +1,183 @@ ---- -cards-deck: electricity ---- - ## Ohms Law *Solve for voltage:* -#card -$\displaystyle V = I*R$ -^1654598090369 +```latex +\displaystyle V = I*R +``` *Solve for resistance:* -#card -$\displaystyle R = \frac{V}{I}$ -^1654598090389 +```latex +\displaystyle R = \frac{V}{I} +``` *Solve for current* -#card - -$\displaystyle I = \frac{V}{R}$ -^1654598090398 +```latex +\displaystyle I = \frac{V}{R} +``` ## Resistors in Series -#card -$R = R1 + R2 + R3 ...$ -^1654598090404 +```latex +R = R1 + R2 + R3 ... +``` ## Resistors in Parallel -#card -$$ -\begin{flalign} -&\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... &\\ -\\ -&\textit{For two resistors in parallel:} &\\ -\\ -&R = \frac{R1 * R2}{R1 + R2} &\\\ -\end{flalign} -$$ +```latex +\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} ... \\ +\textit{}\\ +\textit{For two resistors in parallel:}\\ +\textit{}\\ +R = \frac{R1 * R2}{R1 + R2} +``` + ***Tip:*** If resistors of the same value are in parallel the total resistance is a single resistor divided by the amount if resistors. -## Voltage Divider -#card -^1654598090410 -$V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2})$ +## Voltage Divider + +```latex +V_{out} = V_{in}(\frac{R_{1}}{R_1+R_2}) +``` ## Thevenin’s Theorem States that it is possible to simplify any linear circuit, no matter how complex, to an equivalent circuit with just a single voltage source and series resistance connected to a load. ## Conservation of Charge (First Law) -#card All current entering a node must also leave that node -$$ -\begin{flalign} -\sum{I_{IN}} = \sum{I_{OUT}}&& -\end{flalign} -$$ -**Example:** -^1654598090415 -![](kirchhoffs-law-01.svg) +```latex +\sum{I_{IN}} = \sum{I_{OUT}} +``` +**Example:** +![](Resources/electricity/assets/kirchhoffs-law-1.svg) For this circuit kirchhoffs law states that: -$\displaystyle i1 = i2 + i3 + i4$ +```latex +\displaystyle i1 = i2 + i3 + i4 +``` ## Conservation of Energy (Second Law) All the potential differences around the loop must sum to zero. -$\displaystyle \sum{V} = 0$ +```latex +\displaystyle \sum{V} = 0 +``` ## Capacitors in Series -#card -$\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ...$ -^1654598090421 +```latex +\displaystyle \frac{1}{C_{t}} = \frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} ... +``` ## Impedance in a Circuit -#card -$$ -\begin{flalign} -&Z = \sqrt{R^2 + X^2} &\\\ -\\ -&X = X_{L} - X_{C} \\ -\end{flalign} -$$ -## Capacitive Reactance -#card -^1654598090426 +```latex +Z = \sqrt{R^2 + X^2} \\ +\textit{}\\ +X = X_{L} - X_{C} \\ +``` -$\displaystyle X_{c} = \frac{1}{2 \pi fC}$ +## Capacitive Reactance + +```latex +\displaystyle X_{c} = \frac{1}{2 \pi fC} +``` ## Inductive Reactance -#card - -$\displaystyle X_{l} = 2\pi fL$ -^1654598090432 +```latex +\displaystyle X_{l} = 2\pi fL +``` ## Analog Filters ## Cutoff Frequency for RC Filters -#card - -$\displaystyle f_{c} = \frac{1}{2\pi RC}$ -^1654598090437 +```latex +\displaystyle f_{c} = \frac{1}{2\pi RC} +``` ## Cutoff Frequency for RL Filters -#card - -$\displaystyle f_{c} = \frac{R}{2\pi L}$ -^1654598090445 +```latex +\displaystyle f_{c} = \frac{R}{2\pi L} +``` ## Cutoff Frequency for multiple Low Pass Filters -$\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1}$ +```latex +\displaystyle f_{(-3db)} = f_{c}\sqrt{2^{(\frac{1}{n})}-1} +``` Where $n$ = Number if **identical** filters ## Resonance Frequency for RLC Low Pass Filter -#card - -$\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}}$ -^1654598090452 +```latex +\displaystyle f_{o} = \frac{1}{2\pi \sqrt{LC}} +``` ## Center Frequency with Fc and Fh -#card - -$f_{c} = \sqrt{f_{h}*f_{l}}$ -^1654598090459 +```latex +f_{c} = \sqrt{f_{h}*f_{l}} +``` ## Filter Response for RC Filters -#card - -$V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}})$ -^1654598090466 +```latex +V_{out} = V_{in}(\frac{X_c}{\sqrt{R_{1}^2+X_{c}^2}}) +``` ## Cutoff Frequency $\pi$ Topology Filter -#card - When the two capacitors have the same capacitance, it can be calculated like this: -^1654598090479 - -$\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}}$ - +```latex +\displaystyle f_c = \frac{1}{4\pi\sqrt{LC}} +``` ## Angular Frequency ($\omega$) -#card - -$\omega = 2\pi f = \frac{2\pi}{T}$ -^1654598090492 +```latex +\omega = 2\pi f = \frac{2\pi}{T} +``` ## RLC Series Response This is basically Ohms Law: -$\displaystyle V = IZ$ +```latex +\displaystyle V = IZ +``` Where $Z$ is the impedance: -$Z = \sqrt{R^2 + (X_L - X_C)^2}$ +```latex +Z = \sqrt{R^2 + (X_L - X_C)^2} +``` $X_L$ = Reactive Inductance $X_C$ = Reactive Capacativw ## Current through a transistor - -$\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E}$ + +```latex +\displaystyle I_{EQ} = \frac{V_{BB}-{V_{BE}}}{\frac{R_B}{(\beta+1)}+R_E} +``` ## Gain Bandwidth Product -#card +```latex +GBP = A_V * f_c +``` -$GBP = A_V * f_c$ -^1654598090498 - -$\displaystyle f_c = \frac{GBP}{A_V}$ +```latex +\displaystyle f_c = \frac{GBP}{A_V} +``` ## Bandwidth of Multiple OpAmps Where $n$ = number of stages and $BW$ = Bandwidth of single op-amp -$BW_E = BW\sqrt{2^\frac{1}{n}-1}$ +```latex +BW_E = BW\sqrt{2^\frac{1}{n}-1} +``` ## Power lost in a Resistor -#card - -$P = IV = I^2R = \frac{V^2}{R}$ -^1654598090504 +```latex +P = IV = I^2R = \frac{V^2}{R} +``` diff --git a/Resources.md b/Resources/index.md similarity index 99% rename from Resources.md rename to Resources/index.md index e0d1dc1..17d160e 100644 --- a/Resources.md +++ b/Resources/index.md @@ -97,5 +97,5 @@ It contains some ressources [[Resources/games/web-based|Resources/games/web-based]] [[Resources/games/rpg|Resources/games/rpg]] [[Resources/mechanics/gaggia-baby-millenium|Resources/mechanics/gaggia-baby-millenium]] -[[Resources|Resources]] +[[Resources/index|Resources/index]] diff --git a/Resources/mathematics/derivation/lim-proof.md b/Resources/mathematics/derivation/lim-proof.md index 71bd452..cbba3e6 100644 --- a/Resources/mathematics/derivation/lim-proof.md +++ b/Resources/mathematics/derivation/lim-proof.md @@ -1,7 +1,7 @@ # Proof of x² = 2x -$$ +```latex \begin{flalign} & \frac{d}{dx}(x^2) = 2 &\\\ \\ @@ -20,7 +20,7 @@ $$ &f'(x) = \lim_{x \to 0} 2x+h \\ \end{flalign} -$$ +``` ```desmos-graph diff --git a/templates/recipe.md b/templates/recipe.md index 4d9cf96..385c3af 100644 --- a/templates/recipe.md +++ b/templates/recipe.md @@ -1,10 +1,8 @@ ### [[{{name}}|{{substring name 100 14 ““}}]] {{#if rating}} -{{rating}} Stars +{{rating}}/5 Stars {{else}} -not yet rated +_not yet rated_ {{/if}} - {{#if image}} - -{{/if}} \ No newline at end of file +![]({{image}}){{/if}} \ No newline at end of file