84 lines
2.2 KiB
Markdown
84 lines
2.2 KiB
Markdown
|
# Price Elasticity
|
|||
|
|
|||
|
We can calculate how our projected profits change when increasing or decreasing the price of our product.
|
|||
|
|
|||
|
$|E_d| = \frac{\Delta Q(\%)}{\Delta p(\%)}$
|
|||
|
|
|||
|
If $E_d > 1$ the price is **elastic**, when $E_d < 1$ the price is **inelastic** and when $E_d = 1$ the price is **unitary**.
|
|||
|
|
|||
|
If we break the formula down, it is basically % Change in Quantity / % Change in price.
|
|||
|
|
|||
|
|
|||
|
|
|||
|
**Example:**
|
|||
|
|
|||
|
You sell 10.000 reams of paper at 100€/ream, you raise the price to 150€/ream and sell 7.000 reams.
|
|||
|
|
|||
|
The Price Elasticity is now $\displaystyle \frac{\frac{QN-QI}{(QN+QI)/2}}{\frac{PN-PI}{(PN+PI)/2}}$
|
|||
|
|
|||
|
$QN$= old Quantity
|
|||
|
$QI$= new Quantity
|
|||
|
$PN$= old Price
|
|||
|
$PI$= new Price
|
|||
|
|
|||
|
So when we replace the variables with our numbers we get:
|
|||
|
|
|||
|
$\displaystyle E_d = \frac{\frac{10000-7000}{(10000+7000)/2}}{\frac{100-150}{(100+150)/2}}$
|
|||
|
|
|||
|
$\displaystyle E_d \approx −0.88$
|
|||
|
|
|||
|
This means the price is inelastic. Meaning changes in price result in small changes to demand.
|
|||
|
|
|||
|
|
|||
|
**Moar Examples:**
|
|||
|
|
|||
|
At a price of € 4 the quantity demanded of a particular good is
|
|||
|
100 units.
|
|||
|
|
|||
|
1. Calculate the value of the price elasticity.
|
|||
|
2. Explain what type of demand.
|
|||
|
3. Plot the elasticity of demand
|
|||
|
|
|||
|
In each case:
|
|||
|
|
|||
|
a) If the price increases to 5 € and quantity demanded decreases to 90 units.
|
|||
|
b) If the price increases to 5 € and quantity demanded decreases to 50 units.
|
|||
|
c) If the price increases to 5 € and quantity demanded decreases to 75 units.
|
|||
|
d) If the price increases to 5 € and quantity demanded remains unchanged.
|
|||
|
e) If the price stays the same and the quantity demanded increases by 10 units.
|
|||
|
|
|||
|
$\displaystyle a = \frac{\frac{100-90}{(100+90)/2}}{\frac{4-5}{(4+5)/2}} \approx -0.47$
|
|||
|
|
|||
|
→ **Inelastic**
|
|||
|
|
|||
|
$\displaystyle b = \frac{\frac{100-50}{(100+50)/2}}{\frac{4-5}{(4+5)/2}} = -3$
|
|||
|
|
|||
|
→ **Elastic**
|
|||
|
|
|||
|
$\displaystyle c = \frac{\frac{100-75}{(100+75)/2}}{\frac{4-5}{(4+5)/2}} \approx -1.28$
|
|||
|
|
|||
|
→ **Elastic**
|
|||
|
|
|||
|
$\displaystyle d = 0$
|
|||
|
|
|||
|
→ **Perfectly Inelastic**
|
|||
|
|
|||
|
|
|||
|
$\displaystyle e = \frac{(100-110)/((100+110)/2)}{(4-4)/((4+4)/2)} = -\frac{2}{0} = Infinity$
|
|||
|
|
|||
|
→ **Perfectly Elastic**
|
|||
|
|
|||
|
|
|||
|
**Example 3:**
|
|||
|
|
|||
|
ppu = 30
|
|||
|
quantity = 300
|
|||
|
|
|||
|
new ppu = 45
|
|||
|
new quantity = 225
|
|||
|
|
|||
|
$\displaystyle E_d = \frac{(300-225)/((300+225)/2)}{(30-45)/((30+45)/2)} \approx |-0.71|$
|
|||
|
|
|||
|
→ **Inelastic**
|
|||
|
|