feat: add some ai stuff
This commit is contained in:
parent
a7851e5058
commit
578ee0d3fa
@ -15,5 +15,5 @@ steps:
|
||||
from_secret: FTP_PASSWORD
|
||||
commands:
|
||||
- pwd
|
||||
- cd /drone/src/view/public
|
||||
- cd view/public
|
||||
- lftp -e "set sftp:auto-confirm true; set ftp:ssl-force true; set xfer:timeout 10000; debug 3; open -u $FTP_USERNAME,$FTP_PASSWORD sftp://ssh.jim-fx.com:2221; mkdir -p share/karl; cd share/karl; mirror -p --scan-all-first --overwrite --verbose -R --skip-noaccess; quit;"
|
3
.vscode/settings.json
vendored
Normal file
3
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"python.pythonPath": "/home/jim/.pyenv/versions/3.8.6/bin/python"
|
||||
}
|
1
server/.python-version
Normal file
1
server/.python-version
Normal file
@ -0,0 +1 @@
|
||||
3.8.6
|
3
server/requirements.txt
Normal file
3
server/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
keras_applications>=1.0.7,<=1.0.8
|
||||
image-classifiers==1.0.0
|
||||
efficientnet==1.0.0
|
3
server/test.py
Normal file
3
server/test.py
Normal file
@ -0,0 +1,3 @@
|
||||
from segmentation_models import Unet
|
||||
|
||||
model = Unet('resnet34', encoder_weights='imagenet')
|
182
view/package-lock.json
generated
182
view/package-lock.json
generated
@ -8,6 +8,9 @@
|
||||
"name": "svelte-app",
|
||||
"version": "1.0.0",
|
||||
"dependencies": {
|
||||
"@tensorflow-models/deeplab": "^0.2.1",
|
||||
"@tensorflow/tfjs-backend-webgl": "^3.3.0",
|
||||
"@tensorflow/tfjs-converter": "^3.3.0",
|
||||
"ogl": "^0.0.65",
|
||||
"sirv-cli": "^1.0.0",
|
||||
"svelte-file-dropzone": "^0.0.15"
|
||||
@ -173,6 +176,73 @@
|
||||
"integrity": "sha512-1fMXF3YP4pZZVozF8j/ZLfvnR8NSIljt56UhbZ5PeeDmmGHpgpdwQt7ITlGvYaQukCvuBRMLEiKiYC+oeIg4cg==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/@tensorflow-models/deeplab": {
|
||||
"version": "0.2.1",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow-models/deeplab/-/deeplab-0.2.1.tgz",
|
||||
"integrity": "sha512-P30Q0M7DoxU/npMlAbyFG8fVE/eGp7UordxxBHkBixa4JCOFvuug5Q7vNT28b4UIM/i85BuJOImRIETab+HYFg==",
|
||||
"peerDependencies": {
|
||||
"@tensorflow/tfjs-converter": "^3.0.0",
|
||||
"@tensorflow/tfjs-core": "^3.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@tensorflow/tfjs-backend-cpu": {
|
||||
"version": "3.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-3.3.0.tgz",
|
||||
"integrity": "sha512-DLctv+PUZni26kQW1hq8jwQQ8u+GGc/p764WQIC4/IDagGtfGAUW1mHzWcTxtni2l4re1VrwE41ogWLhv4sGHg==",
|
||||
"dependencies": {
|
||||
"@types/seedrandom": "2.4.27",
|
||||
"seedrandom": "2.4.3"
|
||||
},
|
||||
"engines": {
|
||||
"yarn": ">= 1.3.2"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@tensorflow/tfjs-core": "3.3.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@tensorflow/tfjs-backend-webgl": {
|
||||
"version": "3.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-3.3.0.tgz",
|
||||
"integrity": "sha512-GWCtXbrjPTyye3ooId9GlcNDwnIMskZarUpNIQ5g/zeISLfwEQoutA/UqJF+HzuEHgGMsWFkmaO3xKVT7UMpdg==",
|
||||
"dependencies": {
|
||||
"@tensorflow/tfjs-backend-cpu": "3.3.0",
|
||||
"@types/offscreencanvas": "~2019.3.0",
|
||||
"@types/seedrandom": "2.4.27",
|
||||
"@types/webgl-ext": "0.0.30",
|
||||
"@types/webgl2": "0.0.5",
|
||||
"seedrandom": "2.4.3"
|
||||
},
|
||||
"engines": {
|
||||
"yarn": ">= 1.3.2"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@tensorflow/tfjs-core": "3.3.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@tensorflow/tfjs-converter": {
|
||||
"version": "3.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-3.3.0.tgz",
|
||||
"integrity": "sha512-k57wN4yelePhmO9orcT/wzGMIuyedrMpVtg0FhxpV6BQu0+TZ/ti3W4Kb97GWJsoHKXMoing9SnioKfVnBW6hw==",
|
||||
"peerDependencies": {
|
||||
"@tensorflow/tfjs-core": "3.3.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@tensorflow/tfjs-core": {
|
||||
"version": "3.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-3.3.0.tgz",
|
||||
"integrity": "sha512-6G+LcCiQBl4Kza5mDbWbf8QSWBTW3l7SDjGhQzMO1ITtQatHzxkuHGHcJ4CTUJvNA0JmKf4QJWOvlFqEmxwyLQ==",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@types/offscreencanvas": "~2019.3.0",
|
||||
"@types/seedrandom": "2.4.27",
|
||||
"@types/webgl-ext": "0.0.30",
|
||||
"node-fetch": "~2.6.1",
|
||||
"seedrandom": "2.4.3"
|
||||
},
|
||||
"engines": {
|
||||
"yarn": ">= 1.3.2"
|
||||
}
|
||||
},
|
||||
"node_modules/@tsconfig/svelte": {
|
||||
"version": "1.0.10",
|
||||
"resolved": "https://registry.npmjs.org/@tsconfig/svelte/-/svelte-1.0.10.tgz",
|
||||
@ -191,6 +261,11 @@
|
||||
"integrity": "sha512-/Ctrftx/zp4m8JOujM5ZhwzlWLx22nbQJiVqz8/zE15gOeEW+uly3FSX4fGFpcfEvFzXcMCJwq9lGVWgyARXhg==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/@types/offscreencanvas": {
|
||||
"version": "2019.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/offscreencanvas/-/offscreencanvas-2019.3.0.tgz",
|
||||
"integrity": "sha512-esIJx9bQg+QYF0ra8GnvfianIY8qWB0GBx54PK5Eps6m+xTj86KLavHv6qDhzKcu5UUOgNfJ2pWaIIV7TRUd9Q=="
|
||||
},
|
||||
"node_modules/@types/pug": {
|
||||
"version": "2.0.4",
|
||||
"resolved": "https://registry.npmjs.org/@types/pug/-/pug-2.0.4.tgz",
|
||||
@ -215,6 +290,21 @@
|
||||
"@types/node": "*"
|
||||
}
|
||||
},
|
||||
"node_modules/@types/seedrandom": {
|
||||
"version": "2.4.27",
|
||||
"resolved": "https://registry.npmjs.org/@types/seedrandom/-/seedrandom-2.4.27.tgz",
|
||||
"integrity": "sha1-nbVjk33YaRX2kJK8QyWdL0hXjkE="
|
||||
},
|
||||
"node_modules/@types/webgl-ext": {
|
||||
"version": "0.0.30",
|
||||
"resolved": "https://registry.npmjs.org/@types/webgl-ext/-/webgl-ext-0.0.30.tgz",
|
||||
"integrity": "sha512-LKVgNmBxN0BbljJrVUwkxwRYqzsAEPcZOe6S2T6ZaBDIrFp0qu4FNlpc5sM1tGbXUYFgdVQIoeLk1Y1UoblyEg=="
|
||||
},
|
||||
"node_modules/@types/webgl2": {
|
||||
"version": "0.0.5",
|
||||
"resolved": "https://registry.npmjs.org/@types/webgl2/-/webgl2-0.0.5.tgz",
|
||||
"integrity": "sha512-oGaKsBbxQOY5+aJFV3KECDhGaXt+yZJt2y/OZsnQGLRkH6Fvr7rv4pCt3SRH1somIHfej/c4u7NSpCyd9x+1Ow=="
|
||||
},
|
||||
"node_modules/acorn": {
|
||||
"version": "7.4.1",
|
||||
"resolved": "https://registry.npmjs.org/acorn/-/acorn-7.4.1.tgz",
|
||||
@ -1202,6 +1292,15 @@
|
||||
"integrity": "sha1-sGJ44h/Gw3+lMTcysEEry2rhX1E=",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/node-fetch": {
|
||||
"version": "2.6.1",
|
||||
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.6.1.tgz",
|
||||
"integrity": "sha512-V4aYg89jEoVRxRb2fJdAg8FHvI7cEyYdVAh94HH0UIK8oJxUfkjlDQN9RbMx+bEjP7+ggMiFRprSti032Oipxw==",
|
||||
"peer": true,
|
||||
"engines": {
|
||||
"node": "4.x || >=6.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/normalize-path": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
|
||||
@ -1539,6 +1638,11 @@
|
||||
}
|
||||
]
|
||||
},
|
||||
"node_modules/seedrandom": {
|
||||
"version": "2.4.3",
|
||||
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-2.4.3.tgz",
|
||||
"integrity": "sha1-JDhQTa0zkXMUv/GKxNeU8W1qrsw="
|
||||
},
|
||||
"node_modules/semiver": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmjs.org/semiver/-/semiver-1.1.0.tgz",
|
||||
@ -2126,6 +2230,53 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
"@tensorflow-models/deeplab": {
|
||||
"version": "0.2.1",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow-models/deeplab/-/deeplab-0.2.1.tgz",
|
||||
"integrity": "sha512-P30Q0M7DoxU/npMlAbyFG8fVE/eGp7UordxxBHkBixa4JCOFvuug5Q7vNT28b4UIM/i85BuJOImRIETab+HYFg==",
|
||||
"requires": {}
|
||||
},
|
||||
"@tensorflow/tfjs-backend-cpu": {
|
||||
"version": "3.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-3.3.0.tgz",
|
||||
"integrity": "sha512-DLctv+PUZni26kQW1hq8jwQQ8u+GGc/p764WQIC4/IDagGtfGAUW1mHzWcTxtni2l4re1VrwE41ogWLhv4sGHg==",
|
||||
"requires": {
|
||||
"@types/seedrandom": "2.4.27",
|
||||
"seedrandom": "2.4.3"
|
||||
}
|
||||
},
|
||||
"@tensorflow/tfjs-backend-webgl": {
|
||||
"version": "3.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-3.3.0.tgz",
|
||||
"integrity": "sha512-GWCtXbrjPTyye3ooId9GlcNDwnIMskZarUpNIQ5g/zeISLfwEQoutA/UqJF+HzuEHgGMsWFkmaO3xKVT7UMpdg==",
|
||||
"requires": {
|
||||
"@tensorflow/tfjs-backend-cpu": "3.3.0",
|
||||
"@types/offscreencanvas": "~2019.3.0",
|
||||
"@types/seedrandom": "2.4.27",
|
||||
"@types/webgl-ext": "0.0.30",
|
||||
"@types/webgl2": "0.0.5",
|
||||
"seedrandom": "2.4.3"
|
||||
}
|
||||
},
|
||||
"@tensorflow/tfjs-converter": {
|
||||
"version": "3.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-3.3.0.tgz",
|
||||
"integrity": "sha512-k57wN4yelePhmO9orcT/wzGMIuyedrMpVtg0FhxpV6BQu0+TZ/ti3W4Kb97GWJsoHKXMoing9SnioKfVnBW6hw==",
|
||||
"requires": {}
|
||||
},
|
||||
"@tensorflow/tfjs-core": {
|
||||
"version": "3.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-3.3.0.tgz",
|
||||
"integrity": "sha512-6G+LcCiQBl4Kza5mDbWbf8QSWBTW3l7SDjGhQzMO1ITtQatHzxkuHGHcJ4CTUJvNA0JmKf4QJWOvlFqEmxwyLQ==",
|
||||
"peer": true,
|
||||
"requires": {
|
||||
"@types/offscreencanvas": "~2019.3.0",
|
||||
"@types/seedrandom": "2.4.27",
|
||||
"@types/webgl-ext": "0.0.30",
|
||||
"node-fetch": "~2.6.1",
|
||||
"seedrandom": "2.4.3"
|
||||
}
|
||||
},
|
||||
"@tsconfig/svelte": {
|
||||
"version": "1.0.10",
|
||||
"resolved": "https://registry.npmjs.org/@tsconfig/svelte/-/svelte-1.0.10.tgz",
|
||||
@ -2144,6 +2295,11 @@
|
||||
"integrity": "sha512-/Ctrftx/zp4m8JOujM5ZhwzlWLx22nbQJiVqz8/zE15gOeEW+uly3FSX4fGFpcfEvFzXcMCJwq9lGVWgyARXhg==",
|
||||
"dev": true
|
||||
},
|
||||
"@types/offscreencanvas": {
|
||||
"version": "2019.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/offscreencanvas/-/offscreencanvas-2019.3.0.tgz",
|
||||
"integrity": "sha512-esIJx9bQg+QYF0ra8GnvfianIY8qWB0GBx54PK5Eps6m+xTj86KLavHv6qDhzKcu5UUOgNfJ2pWaIIV7TRUd9Q=="
|
||||
},
|
||||
"@types/pug": {
|
||||
"version": "2.0.4",
|
||||
"resolved": "https://registry.npmjs.org/@types/pug/-/pug-2.0.4.tgz",
|
||||
@ -2168,6 +2324,21 @@
|
||||
"@types/node": "*"
|
||||
}
|
||||
},
|
||||
"@types/seedrandom": {
|
||||
"version": "2.4.27",
|
||||
"resolved": "https://registry.npmjs.org/@types/seedrandom/-/seedrandom-2.4.27.tgz",
|
||||
"integrity": "sha1-nbVjk33YaRX2kJK8QyWdL0hXjkE="
|
||||
},
|
||||
"@types/webgl-ext": {
|
||||
"version": "0.0.30",
|
||||
"resolved": "https://registry.npmjs.org/@types/webgl-ext/-/webgl-ext-0.0.30.tgz",
|
||||
"integrity": "sha512-LKVgNmBxN0BbljJrVUwkxwRYqzsAEPcZOe6S2T6ZaBDIrFp0qu4FNlpc5sM1tGbXUYFgdVQIoeLk1Y1UoblyEg=="
|
||||
},
|
||||
"@types/webgl2": {
|
||||
"version": "0.0.5",
|
||||
"resolved": "https://registry.npmjs.org/@types/webgl2/-/webgl2-0.0.5.tgz",
|
||||
"integrity": "sha512-oGaKsBbxQOY5+aJFV3KECDhGaXt+yZJt2y/OZsnQGLRkH6Fvr7rv4pCt3SRH1somIHfej/c4u7NSpCyd9x+1Ow=="
|
||||
},
|
||||
"acorn": {
|
||||
"version": "7.4.1",
|
||||
"resolved": "https://registry.npmjs.org/acorn/-/acorn-7.4.1.tgz",
|
||||
@ -2987,6 +3158,12 @@
|
||||
"integrity": "sha1-sGJ44h/Gw3+lMTcysEEry2rhX1E=",
|
||||
"dev": true
|
||||
},
|
||||
"node-fetch": {
|
||||
"version": "2.6.1",
|
||||
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.6.1.tgz",
|
||||
"integrity": "sha512-V4aYg89jEoVRxRb2fJdAg8FHvI7cEyYdVAh94HH0UIK8oJxUfkjlDQN9RbMx+bEjP7+ggMiFRprSti032Oipxw==",
|
||||
"peer": true
|
||||
},
|
||||
"normalize-path": {
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz",
|
||||
@ -3249,6 +3426,11 @@
|
||||
"integrity": "sha512-rp3So07KcdmmKbGvgaNxQSJr7bGVSVk5S9Eq1F+ppbRo70+YeaDxkw5Dd8NPN+GD6bjnYm2VuPuCXmpuYvmCXQ==",
|
||||
"dev": true
|
||||
},
|
||||
"seedrandom": {
|
||||
"version": "2.4.3",
|
||||
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-2.4.3.tgz",
|
||||
"integrity": "sha1-JDhQTa0zkXMUv/GKxNeU8W1qrsw="
|
||||
},
|
||||
"semiver": {
|
||||
"version": "1.1.0",
|
||||
"resolved": "https://registry.npmjs.org/semiver/-/semiver-1.1.0.tgz",
|
||||
|
@ -29,6 +29,9 @@
|
||||
"typescript": "^4.0.0"
|
||||
},
|
||||
"dependencies": {
|
||||
"@tensorflow-models/deeplab": "^0.2.1",
|
||||
"@tensorflow/tfjs-backend-webgl": "^3.3.0",
|
||||
"@tensorflow/tfjs-converter": "^3.3.0",
|
||||
"ogl": "^0.0.65",
|
||||
"sirv-cli": "^1.0.0",
|
||||
"svelte-file-dropzone": "^0.0.15"
|
||||
|
@ -3,27 +3,69 @@
|
||||
self.addEventListener('message', function (e) {
|
||||
|
||||
|
||||
const { data: { i, arr: pixels } } = e;
|
||||
const { data: { i, pixels, correctDistortion = true, width, height } } = e;
|
||||
|
||||
let store = {};
|
||||
// This is the old method just by counting pixels
|
||||
const oldStore = {};
|
||||
|
||||
//This method applies some weight to the pixels
|
||||
const store = {};
|
||||
let totalPixelValue = 0;
|
||||
|
||||
let total = pixels.length / 4;
|
||||
|
||||
const threshold = 200;
|
||||
|
||||
for (let i = 0; i < total; i++) {
|
||||
|
||||
|
||||
const r = pixels[i * 4 + 0] > threshold ? 1 : 0;
|
||||
const g = pixels[i * 4 + 1] > threshold ? 1 : 0;
|
||||
const b = pixels[i * 4 + 2] > threshold ? 1 : 0;
|
||||
const id = r + "-" + g + "-" + b;
|
||||
store[id] = store[id] + 1 || 1;
|
||||
|
||||
//Caclulate y position of pixel
|
||||
const y = Math.floor(i / width);
|
||||
|
||||
// KarlKilian Formel
|
||||
const pixelValue = Math.cos(360 / (Math.pow(height, 2)) * Math.pow(y, 2) + (-360 / height) * y + 90);
|
||||
|
||||
oldStore[id] = oldStore[id] + 1 || 1;
|
||||
|
||||
if (id in store) {
|
||||
store[id] += pixelValue;
|
||||
} else {
|
||||
store[id] = pixelValue;
|
||||
}
|
||||
|
||||
totalPixelValue += pixelValue;
|
||||
|
||||
Object.keys(store).forEach(k => {
|
||||
store[k] = store[k] / total;
|
||||
}
|
||||
|
||||
const finalResult = {};
|
||||
|
||||
|
||||
// Normalize stores
|
||||
Object.keys(oldStore).forEach(k => {
|
||||
finalResult[k] = {
|
||||
distortedValue: oldStore[k] / total
|
||||
}
|
||||
});
|
||||
|
||||
Object.keys(store).forEach(k => {
|
||||
finalResult[k].value = store[k] / totalPixelValue;
|
||||
});
|
||||
|
||||
self.postMessage({ res: store, i });
|
||||
// Conver to array for easier
|
||||
const result = Object.keys(finalResult).map(key => {
|
||||
const [r, g, b] = key.split("-").map((n) => parseInt(n) * 255);
|
||||
return {
|
||||
id: key,
|
||||
color: `rgb(${r},${g},${b})`,
|
||||
value: finalResult[key].value,
|
||||
distortedValue: finalResult[key].distortedValue
|
||||
}
|
||||
}).sort((a, b) => a.value > b.value ? -1 : 1)
|
||||
|
||||
self.postMessage({ result, i });
|
||||
}, false);
|
@ -9,7 +9,32 @@ import includePaths from 'rollup-plugin-includepaths';
|
||||
import glslify from 'rollup-plugin-glslify';
|
||||
const production = !process.env.ROLLUP_WATCH;
|
||||
|
||||
export default {
|
||||
export default [
|
||||
{
|
||||
input: 'src/ai.ts',
|
||||
output: {
|
||||
sourcemap: true,
|
||||
format: 'iife',
|
||||
name: 'app',
|
||||
file: 'public/build/ai-worker.js'
|
||||
},
|
||||
plugins: [
|
||||
resolve({
|
||||
browser: true,
|
||||
dedupe: ['svelte']
|
||||
}),
|
||||
commonjs(),
|
||||
typescript({
|
||||
sourceMap: !production,
|
||||
inlineSources: !production
|
||||
}),
|
||||
|
||||
// If we're building for production (npm run build
|
||||
// instead of npm run dev), minify
|
||||
production && terser()
|
||||
]
|
||||
},
|
||||
{
|
||||
input: 'src/main.ts',
|
||||
output: {
|
||||
sourcemap: true,
|
||||
@ -62,4 +87,4 @@ export default {
|
||||
followSymlinks: true
|
||||
}
|
||||
}
|
||||
};
|
||||
}];
|
||||
|
36
view/src/ai.ts
Normal file
36
view/src/ai.ts
Normal file
@ -0,0 +1,36 @@
|
||||
import '@tensorflow/tfjs-backend-webgl';
|
||||
import * as tfconv from '@tensorflow/tfjs-converter';
|
||||
import * as deeplab from '@tensorflow-models/deeplab';
|
||||
|
||||
const createModel = async () => {
|
||||
|
||||
console.log("Ezzzz")
|
||||
const base = 'pascal'; // set to your preferred model, out of `pascal`,
|
||||
// `cityscapes` and `ade20k`
|
||||
const quantizationBytes = 2; // either 1, 2 or 4
|
||||
// use the getURL utility function to get the URL to the pre-trained weights
|
||||
const modelUrl = deeplab.getURL(base, quantizationBytes);
|
||||
const rawModel = await tfconv.loadGraphModel(modelUrl);
|
||||
const modelName = 'pascal'; // set to your preferred model, out of `pascal`,
|
||||
// `cityscapes` and `ade20k`
|
||||
return new deeplab.SemanticSegmentation(rawModel);
|
||||
};
|
||||
|
||||
const model = createModel();
|
||||
model.then(() => console.log(`Loaded the model successfully!`));
|
||||
|
||||
self.addEventListener('message', async (e) => {
|
||||
|
||||
const { pixels, width, height } = e.data;
|
||||
|
||||
console.log(pixels, width, height)
|
||||
|
||||
var array = new Uint8ClampedArray(pixels);
|
||||
|
||||
var image = new ImageData(array, width, height);
|
||||
|
||||
console.log("model", await (await model).segment(image))
|
||||
|
||||
console.log(e);
|
||||
|
||||
});
|
@ -5,7 +5,7 @@
|
||||
|
||||
import { quartInOut } from "svelte/easing";
|
||||
|
||||
let visible = true;
|
||||
let correctDistortion = true;
|
||||
|
||||
function scaleX(node, { duration, delay }) {
|
||||
return {
|
||||
@ -20,23 +20,18 @@
|
||||
};
|
||||
}
|
||||
|
||||
const prom = countPixels(img.overlayData)
|
||||
.then((res) => {
|
||||
return Object.keys(res).map((c) => {
|
||||
const [r, g, b] = c.split("-").map((n) => parseInt(n) * 255);
|
||||
|
||||
return {
|
||||
r,
|
||||
g,
|
||||
b,
|
||||
amount: res[c],
|
||||
};
|
||||
});
|
||||
})
|
||||
.then((colors) => colors.sort((a, b) => (a.amount > b.amount ? -1 : 1)));
|
||||
const prom = countPixels(img, correctDistortion);
|
||||
</script>
|
||||
|
||||
<div id="header">
|
||||
<h3>ANALYZER</h3>
|
||||
<label for="correct-distort">Correct Distortion</label>
|
||||
<input
|
||||
id="correct-distort"
|
||||
type="checkbox"
|
||||
bind:checked={correctDistortion}
|
||||
/>
|
||||
</div>
|
||||
|
||||
{#await prom}
|
||||
<p>Loading...</p>
|
||||
@ -44,20 +39,36 @@
|
||||
<div class="list">
|
||||
{#each result as color, i}
|
||||
<p>
|
||||
{Math.floor(color.amount * 1000) / 10}%
|
||||
{Math.floor(
|
||||
(correctDistortion ? color.value : color.distortedValue) * 1000
|
||||
) / 10}%
|
||||
</p>
|
||||
<div
|
||||
transition:scaleX={{ duration: 500, delay: i * 200 }}
|
||||
class="bar"
|
||||
style={`width: ${color.amount * 100}%; background-color: rgb(${
|
||||
color.r
|
||||
}, ${color.g}, ${color.b})`}
|
||||
style={`width: ${
|
||||
(correctDistortion ? color.value : color.distortedValue) * 100
|
||||
}%; background-color:${color.color}`}
|
||||
/>
|
||||
{/each}
|
||||
</div>
|
||||
{/await}
|
||||
|
||||
<style>
|
||||
#header {
|
||||
display: flex;
|
||||
align-items: center;
|
||||
}
|
||||
|
||||
#header > label {
|
||||
margin-left: 10px;
|
||||
}
|
||||
|
||||
#header > input {
|
||||
margin: 0px;
|
||||
margin-left: 5px;
|
||||
}
|
||||
|
||||
.list {
|
||||
display: grid;
|
||||
grid-template-rows: auto;
|
||||
@ -74,5 +85,6 @@
|
||||
height: 20px;
|
||||
margin-bottom: 20px;
|
||||
transform-origin: 0px 0px;
|
||||
transition: width 0.3s ease;
|
||||
}
|
||||
</style>
|
||||
|
@ -45,6 +45,8 @@
|
||||
let my = 0;
|
||||
let downX, downOffset;
|
||||
|
||||
let debugValue = 0;
|
||||
|
||||
let isStrPressed = false;
|
||||
let isSpacePressed = false;
|
||||
let lastActiveTool;
|
||||
@ -152,6 +154,16 @@
|
||||
|
||||
isOriginal = e.target.id === "cx1";
|
||||
|
||||
//Caclulate y position of pixel
|
||||
const y = my / wrapperHeightRatio;
|
||||
|
||||
// KarlKilian Formel
|
||||
debugValue = Math.cos(
|
||||
(360 / Math.pow(image.height, 2)) * Math.pow(y, 2) +
|
||||
(-360 / image.height) * y +
|
||||
90
|
||||
);
|
||||
|
||||
if (isDown) {
|
||||
if (activeTool === "pan") {
|
||||
// TODO fix overflowiung
|
||||
@ -291,7 +303,7 @@
|
||||
}%)); opacity: ${(layerOpacity / 100) * 0.5};`}
|
||||
/>
|
||||
|
||||
<!-- <p>{topLeftY}|{my}</p> -->
|
||||
<p>{debugValue}|{my}</p>
|
||||
|
||||
<canvas class:visible={mode === "3d"} bind:this={canvas3D} />
|
||||
</div>
|
||||
|
20
view/src/helpers/AI.ts
Normal file
20
view/src/helpers/AI.ts
Normal file
@ -0,0 +1,20 @@
|
||||
const worker = new Worker("build/ai-worker.js");
|
||||
|
||||
let i = 0;
|
||||
|
||||
let cb = {};
|
||||
|
||||
worker.addEventListener("message", ev => {
|
||||
if (ev.data.i in cb) {
|
||||
cb[ev.data.i](ev.data.res);
|
||||
}
|
||||
})
|
||||
|
||||
const analyze = (img: Image) => new Promise((res, rej) => {
|
||||
i++;
|
||||
const _i = i;
|
||||
worker.postMessage({ i: _i, pixels: img.data, width: img.width, height: img.height });
|
||||
cb[_i] = res;
|
||||
});
|
||||
|
||||
export default { analyze }
|
@ -1,3 +1,5 @@
|
||||
import { images } from "../stores";
|
||||
|
||||
const worker = new Worker("worker.js");
|
||||
|
||||
let i = 0;
|
||||
@ -6,13 +8,20 @@ let cb = {};
|
||||
|
||||
worker.addEventListener("message", ev => {
|
||||
if (ev.data.i in cb) {
|
||||
cb[ev.data.i](ev.data.res);
|
||||
cb[ev.data.i](ev.data.result);
|
||||
}
|
||||
})
|
||||
|
||||
export default (arr: ArrayBuffer) => new Promise((res, rej) => {
|
||||
interface res {
|
||||
color: string
|
||||
distortedValue: number
|
||||
id: string
|
||||
value: number
|
||||
}
|
||||
|
||||
export default (img: Image, correctDistortion: boolean): Promise<res[]> => new Promise((res, rej) => {
|
||||
i++;
|
||||
const _i = i;
|
||||
worker.postMessage({ i: _i, arr });
|
||||
worker.postMessage({ i: _i, pixels: img.overlayData, width: img.width, height: img.height, correctDistortion });
|
||||
cb[_i] = res;
|
||||
});
|
@ -1,3 +1,4 @@
|
||||
export { default as bufToImageUrl } from "./BuffToImg";
|
||||
export { default as fileToImage } from "./FileToImage";
|
||||
export { default as countPixels } from "./CountPixels";
|
||||
export { default as AI } from "./AI";
|
@ -2,7 +2,7 @@
|
||||
import { Cross } from "../icons";
|
||||
import { fly, fade } from "svelte/transition";
|
||||
import { images as imageData, route } from "stores";
|
||||
import { bufToImageUrl } from "helpers";
|
||||
import { bufToImageUrl, AI } from "../helpers";
|
||||
import type { Writable } from "svelte/store";
|
||||
|
||||
import Toast from "../components/Toast";
|
||||
@ -59,6 +59,7 @@
|
||||
showAnalyzerIndex = undefined;
|
||||
} else {
|
||||
showAnalyzerIndex = i;
|
||||
//AI.analyze(img);
|
||||
}
|
||||
} else {
|
||||
showAnalyzerIndex = undefined;
|
||||
|
7
view/tsconfig.json
Executable file → Normal file
7
view/tsconfig.json
Executable file → Normal file
@ -1,9 +1,8 @@
|
||||
{
|
||||
"extends": "@tsconfig/svelte/tsconfig.json",
|
||||
|
||||
"compileOptions":{
|
||||
"baseUrl": "src",
|
||||
"compilerOptions": {
|
||||
"baseUrl": "src"
|
||||
},
|
||||
"include": ["src/**/*"],
|
||||
"include": ["./src/**/*"],
|
||||
"exclude": ["node_modules/*", "__sapper__/*", "public/*"]
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user